Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deposition conditions for the indium-bearing polymetallic quartz veins at Sarvlaxviken, south-eastern Finland
Stockholm University, Faculty of Science, Department of Geological Sciences.
Number of Authors: 42018 (English)In: Mineralogical magazine, ISSN 0026-461X, E-ISSN 1471-8022, Vol. 82, p. S43-S59Article in journal (Refereed) Published
Abstract [en]

Polymetallic quartz veins, with up to 1500ppm indium, have been discovered recently in the Sarvlaxviken area within the 1.64Ga anorogenic multiphase Wiborg rapakivi batholith and adjacent 1.90Ga Svecofennian crust in SE Finland. Evidence from primary fluid inclusions in the Sarvlaxviken area provides new information on the hydrothermal transport and depositional processes of metals in anorogenic granites. Fluid inclusions with variable aqueous liquid and vapour proportions (5-90vol.% vapour) occur in quartz, cassiterite and fluorite belonging to three generations of polymetallic quartz veins. Microthermometry indicates that the veins were deposited at temperatures that range from similar to 500 degrees C down to <100 degrees C and salinities from 0 to 16 eq. mass% NaCl. Fluid inclusion data show that the depositional conditions were similar regardless of vein generation. The interpreted depositional processes involve phase separation with a combination of condensation, cooling and boiling of an initially low-salinity (<3 eq. mass% NaCl) aqueous magmatic vapour phase enriched in CO2-F-Cl-S and metals. Fluid inclusions with low salinities dominate, but higher salinities are recorded in metal-rich parts of the veins. The turbulent fluid flow, with complex geometry and temperature-salinity patterns, may explain why sulfide and/or oxide opaque minerals occur irregularly, and are locally the dominating vein minerals, but disappear completely into barren parts of the quartz veins. All fluids are considered to have been generated by the F-rich Marviken granite (and related granite dykes), which show all geochemical criteria for an ore-fertile granite. The quartz veins investigated in the adjacent Svecofennian country rocks are considered to represent the very last stage of a fluid with similar characteristics to the fluid responsible for the ore formation in the Sarvlaxviken area, but that had cooled to <100 degrees C.

Place, publisher, year, edition, pages
2018. Vol. 82, p. S43-S59
Keywords [en]
fluid inclusions, indium, polymetallic quartz veins, rapakivi granites, Sarvlaxviken, Finland
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-158165DOI: 10.1180/minmag.2017.081.024ISI: 000435650000003OAI: oai:DiVA.org:su-158165DiVA, id: diva2:1234214
Available from: 2018-07-23 Created: 2018-07-23 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Broman, Curt

Search in DiVA

By author/editor
Broman, Curt
By organisation
Department of Geological Sciences
In the same journal
Mineralogical magazine
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf