Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The impact of future atmospheric circulation changes over the Euro-Atlantic sector on urban PM2.5 concentrations
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 62018 (English)In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 70, no 1, article id 1445379Article in journal (Refereed) Published
Abstract [en]

Air quality management is strongly driven by legislative aspects related to the exceedance of air quality limit values. Here, we use the Norwegian Climate Centre's Earth System Model to assess the impact of a future scenario of maximum feasible aerosol emission abatement and increasing greenhouse gases (RCP4.5) on urban PM2.5 concentrations in Europe. Daily PM2.5 concentrations are assessed using a novel downscaling method which allows us to compute exceedances of current and planned air quality thresholds. For the latter, we assume that future ambitious emission reductions are likely to be accompanied by stricter air quality thresholds. The changes in PM2.5 concentrations are discussed in the context of the large-scale atmospheric changes observed relative to the present-day climate.Our results show a more positive North Atlantic Oscillation mean state in the future, combined with a large eastward shift of both North Atlantic sea-level pressure centres of action. This is associated with more frequent mid-latitude blocking and a northward shift of the jet stream. These changes favour higher than expected anthropogenic urban PM2.5 concentrations in Southern Europe, while they have the opposite effect on the northern half of the continent. In the future scenario, PM concentrations in substantial parts of Southern Europe are found to exceed the World Health Organisation Air Quality Guideline daily limit of 25g/m(3) on 25 to over 50days per year, and annual guidelines of 10 mu g/m(3) on more than 80% of the 30years analysed in our study. We conclude that alterations in atmospheric circulation in the future, induced by stringent maximum feasible air pollution mitigation as well as GHG emissions, will negatively influence the effectiveness of these emission abatements over large parts of Europe. This has important implications for future air quality policies.

Place, publisher, year, edition, pages
2018. Vol. 70, no 1, article id 1445379
Keywords [en]
particulate matter, air quality, urban pollution, atmospheric circulation, maximum feasible reduction
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-157689DOI: 10.1080/16000889.2018.1468704ISI: 000433998500001OAI: oai:DiVA.org:su-157689DiVA, id: diva2:1236064
Available from: 2018-07-31 Created: 2018-07-31 Last updated: 2018-07-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Messori, GabrieleHannachi, Abdel
By organisation
Department of Meteorology Department of Environmental Science and Analytical Chemistry
In the same journal
Tellus. Series B, Chemical and physical meteorology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf