Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanism and Structure of gamma-Resorcylate Decarboxylase
Stockholm University, Faculty of Science, Department of Organic Chemistry.ORCID iD: 0000-0002-6542-6649
Show others and affiliations
Number of Authors: 72018 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 57, no 22, p. 3167-3175Article in journal (Refereed) Published
Abstract [en]

gamma-Resorcylate decarboxylase (gamma-RSD) has evolved to catalyze the reversible decarboxylation of 2,6-dihydroxybenzoate to resorcinol in a nonoxidative fashion. This enzyme is of significant interest because of its potential for the production of gamma-resorcylate and other benzoic acid derivatives under environmentally sustainable conditions. Kinetic constants for the decarboxylation of 2,6-dihydroxybenzoate catalyzed by gamma-RSD from Polaromonas sp. JS666 are reported, and the enzyme is shown to be active with 2,3-dihydroxybenzoate, 2,4,6-trihydroxybenzoate, and 2,6-dihydroxy-4-methylbenzoate. The three-dimensional structure of gamma-RSD with the inhibitor 2-nitroresorcinol (2-NR) bound in the active site is reported. 2-NR is directly ligated to a Mn2+ bound in the active site, and the nitro substituent of the inhibitor is tilted significantly from the plane of the phenyl ring. The inhibitor exhibits a binding mode different from that of the substrate bound in the previously determined structure of gamma-RSD from Rhizobtum sp. MTP-10005. On the basis of the crystal structure of the enzyme from Polaromonas sp. JS666, complementary density functional calculations were performed to investigate the reaction mechanism. In the proposed reaction mechanism, gamma-RSD binds 2,6-dihydroxybenzoate by direct coordination of the active site manganese ion to the carboxylate anion of the substrate and one of the adjacent phenolic oxygens. The enzyme subsequently catalyzes the transfer of a proton to Cl of y-resorcylate prior to the actual decarboxylation step. The reaction mechanism proposed previously, based on the structure of gamma-RSD from Rhizobtum sp. MTP-10005, is shown to be associated with high energies and thus less likely to be correct.

Place, publisher, year, edition, pages
2018. Vol. 57, no 22, p. 3167-3175
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-158276DOI: 10.1021/acs.biochem.7b01213ISI: 000434893900010PubMedID: 29283551OAI: oai:DiVA.org:su-158276DiVA, id: diva2:1236284
Available from: 2018-08-01 Created: 2018-08-01 Last updated: 2018-08-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Sheng, XiangHimo, FahmiRaushel, Frank M.
By organisation
Department of Organic Chemistry
In the same journal
Biochemistry
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf