Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0002-4603-2097
Show others and affiliations
Number of Authors: 142018 (English)In: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 97, no 5, article id 053410Article in journal (Refereed) Published
Abstract [en]

The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.

Place, publisher, year, edition, pages
2018. Vol. 97, no 5, article id 053410
Keywords [en]
Molecular spectra, Potential energy surfaces, Single- and few-photon ionization & excitation, Ultrafast phenomena
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-157740DOI: 10.1103/PhysRevA.97.053410ISI: 000433002600009OAI: oai:DiVA.org:su-157740DiVA, id: diva2:1236307
Available from: 2018-08-01 Created: 2018-08-01 Last updated: 2022-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Ertan, EmelieOdelius, Michael

Search in DiVA

By author/editor
Ertan, EmelieOdelius, Michael
By organisation
Department of Physics
In the same journal
Physical Review A: covering atomic, molecular, and optical physics and quantum information
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 67 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf