Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the social dynamics of moisture recycling
Stockholm University, Faculty of Science, Stockholm Resilience Centre. Colorado State University, USA.
Stockholm University, Faculty of Science, Stockholm Resilience Centre. Research Institute for Humanity and Nature, Japan.ORCID iD: 0000-0002-7739-5069
Number of Authors: 22018 (English)In: Earth System Dynamics, ISSN 2190-4979, E-ISSN 2190-4987, Vol. 9, no 2, p. 829-847Article in journal (Refereed) Published
Abstract [en]

The biophysical phenomenon of terrestrial moisture recycling connects distant regions via the atmospheric branch of the water cycle. This process, whereby the land surface mediates evaporation to the atmosphere and the precipitation that falls downwind, is increasingly well-understood. However, recent studies highlight a need to consider an important and often missing dimension - the social. Here, we explore the social dynamics of three case study countries with strong terrestrial moisture recycling: Mongolia, Niger, and Bolivia. We first use the WAM-2layers moisture tracking scheme and ERA-Interim climate reanalysis, to calculate the evaporation sources for each country's precipitation, a.k.a. the precipitationshed. Second, we examine the social aspects of source and sink regions, using economic, food security, and land-use data. Third, we perform a literature review of relevant economic links, land-use policies, and land-use change for each country and its evaporation sources. The moisture-recycling analysis reveals that Mongolia, Niger, and Bolivia recycle 13, 9, and 18% of their own moisture, respectively. Our analysis of social aspects suggests considerable heterogeneity in the social characteristics within each country relative to the societies in its corresponding evaporation sources. We synthesize our case studies and develop a set of three system archetypes that capture the core features of the moisturerecycling social-ecological systems (MRSESs): isolated, regional, and tele-coupled systems. Our key results are as follows: (a) geophysical tele-connections of atmospheric moisture are complemented by social tele-couplings forming feedback loops, and consequently, complex adaptive systems; (b) the heterogeneity of the social dynamics among our case studies renders broad generalization difficult and highlights the need for nuanced individual analysis; and, (c) there does not appear to be a single desirable or undesirable MRSES, with each archetype associated with benefits and disadvantages. This exploration of the social dimensions of moisture recycling is part of an extension of the emerging discipline of socio-hydrology and a suggestion for further exploration of new disciplines such as socio-meteorology or socio-climatology, within which the Earth system is considered as a coevolutionary social-ecological system.

Place, publisher, year, edition, pages
2018. Vol. 9, no 2, p. 829-847
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-158333DOI: 10.5194/esd-9-829-2018ISI: 000435217400001OAI: oai:DiVA.org:su-158333DiVA, id: diva2:1237351
Available from: 2018-08-08 Created: 2018-08-08 Last updated: 2018-08-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Keys, Patrick W.Wang-Erlandsson, Lan
By organisation
Stockholm Resilience Centre
In the same journal
Earth System Dynamics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf