Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Zinc deficiency tolerance in maize is associated with the up-regulation of Zn transporter genes and antioxidant activities
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 72018 (English)In: Plant Biology, ISSN 1435-8603, E-ISSN 1438-8677, Vol. 20, no 4, p. 765-770Article in journal (Refereed) Published
Abstract [en]

Zinc (Zn) is an essential micronutrient for the growth and development of plants. However, Zn deficiency is a common abiotic stress causing yield loss in crop plants. This study elucidates the mechanisms of Zn deficiency tolerance in maize through physiological and molecular techniques. Maize lines tolerant (PAC) and sensitive (DAC) to Zn deficiency were examined physiologically and by atomic absorption spectrometry (AAS). Proteins, H2O2, SOD, POD, membrane permeability and gene expression (using real-time PCR) of roots and shoots of both maize lines were assessed. Zn deficiency had no significant effect on root parameters compared with control plants in PAC and DAC but showed a substantial reduction in shoot parameters in DAC. AAS showed a significant decrease in Zn concentrations in both roots and shoots of DAC but not PAC under Zn deficiency, implying that Zn deficiency tolerance mechanisms exist in PAC. Consistently, total protein and membrane permeability were significantly reduced in DAC but not PAC in both roots and shoots under Zn deficiency in comparison with Zn-sufficient plants. Real-time PCR showed that expression of ZmZIP1, ZmZIP4 and ZmIRT1 transporter genes significantly increased in roots of PAC, but not in DAC due to Zn deficiency compared with controls. The H2O2 concentration dramatically increased in roots of DAC but not PAC. Moreover, tolerant PAC showed a significant increase in POD and SOD activity due to Zn deficiency, suggesting that POD- and SOD-mediated antioxidant defence might provide tolerance, at least in part, under Zn deficiency in PAC. This study provides an essential background for improving Zn biofortification of maize.

Place, publisher, year, edition, pages
2018. Vol. 20, no 4, p. 765-770
Keywords [en]
Antioxidant activities, maise, zea mays, Zn deficiency, Zn transporters
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-158378DOI: 10.1111/plb.12837ISI: 000435810800015PubMedID: 29718561OAI: oai:DiVA.org:su-158378DiVA, id: diva2:1238021
Available from: 2018-08-10 Created: 2018-08-10 Last updated: 2018-08-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Plant Biology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf