Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dipolar dark matter with massive bigravity
Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Number of Authors: 22015 (English)In: Journal of Cosmology and Astroparticle Physics, E-ISSN 1475-7516, no 12, article id 026Article in journal (Refereed) Published
Abstract [en]

Massive gravity theories have been developed as viable IR, modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

Place, publisher, year, edition, pages
2015. no 12, article id 026
Keywords [en]
modified gravity, dark matter theory, gravity, dark energy theory
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-159626DOI: 10.1088/1475-7516/2015/12/026ISI: 000367884600026OAI: oai:DiVA.org:su-159626DiVA, id: diva2:1245590
Available from: 2018-09-05 Created: 2018-09-05 Last updated: 2023-03-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
Nordic Institute for Theoretical Physics (Nordita)Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Journal of Cosmology and Astroparticle Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf