Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ozone pollution will compromise efforts to increase global wheat production
Show others and affiliations
Number of Authors: 212018 (English)In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 24, no 8, p. 3560-3574Article in journal (Refereed) Published
Abstract [en]

Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.

Place, publisher, year, edition, pages
2018. Vol. 24, no 8, p. 3560-3574
Keywords [en]
climate change, developed countries, developing countries, food security, irrigation, ozone, stomatal uptake, wheat, yield
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-159022DOI: 10.1111/gcb.14157ISI: 000437284700025PubMedID: 29604158OAI: oai:DiVA.org:su-159022DiVA, id: diva2:1246312
Available from: 2018-09-07 Created: 2018-09-07 Last updated: 2018-09-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Sharps, KatrinaSimpson, DavidJaramillo, FernandoHarmens, HarryHayes, Felicity
By organisation
Department of Physical GeographyStockholm Resilience Centre
In the same journal
Global Change Biology
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf