Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Universal inequalities in Ehrhart theory
Stockholm University, Faculty of Science, Department of Mathematics.
Number of Authors: 22018 (English)In: Israel Journal of Mathematics, ISSN 0021-2172, E-ISSN 1565-8511, Vol. 227, no 2, p. 843-859Article in journal (Refereed) Published
Abstract [en]

In this paper, we show the existence of universal inequalities for the h*-vector of a lattice polytope P, that is, we show that there are relations among the coefficients of the h*-polynomial that are independent of both the dimension and the degree of P. More precisely, we prove that the coefficients h* (1) and h* (2) of the h*-vector (h* (0), h* (1),..., h* (d) ) of a lattice polytope of any degree satisfy Scott's inequality if h* (3) = 0.

Place, publisher, year, edition, pages
2018. Vol. 227, no 2, p. 843-859
National Category
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-160148DOI: 10.1007/s11856-018-1744-7ISI: 000442514000012OAI: oai:DiVA.org:su-160148DiVA, id: diva2:1248845
Available from: 2018-09-17 Created: 2018-09-17 Last updated: 2018-09-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Balletti, Gabriele
By organisation
Department of Mathematics
In the same journal
Israel Journal of Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf