Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistical properties of scale-invariant helical magnetic fields and applications to cosmology
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Colorado, U.S.A; Carnegie Mellon University, U.S.A..ORCID iD: 0000-0002-7304-021X
Show others and affiliations
Number of Authors: 52018 (English)In: Journal of Cosmology and Astroparticle Physics, E-ISSN 1475-7516, no 8, article id 034Article in journal (Refereed) Published
Abstract [en]

We investigate the statistical properties of isotropic, stochastic, Gaussian distributed, helical magnetic fields characterized by different shapes of the energy spectra at large length scales and study the associated realizability condition. We discuss smoothed magnetic fields that are commonly used when the primordial magnetic field is constrained by observational data. We are particularly interested in scale-invariant magnetic fields that can be generated during the inflationary stage by quantum fluctuations. We determine the correlation length of such magnetic fields and relate it to the infrared cutoff of perturbations produced during inflation. We show that this scale determines the observational signatures of the inflationary magnetic fields on the cosmic microwave background. At smaller scales, the scale-invariant spectrum changes with time. It becomes a steeper weak-turbulence spectrum at progressively larger scales. We show numerically that the critical length scale where this happens is the turbulent-diffusive scale, which increases with the square root of time.

Place, publisher, year, edition, pages
2018. no 8, article id 034
Keywords [en]
Magnetohydrodynamics, primordial magnetic fields, CMBR polarisation, physics of the early universe
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-160149DOI: 10.1088/1475-7516/2018/08/034ISI: 000442637500001OAI: oai:DiVA.org:su-160149DiVA, id: diva2:1248858
Available from: 2018-09-17 Created: 2018-09-17 Last updated: 2023-03-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Brandenburg, Axel

Search in DiVA

By author/editor
Brandenburg, Axel
By organisation
Department of AstronomyNordic Institute for Theoretical Physics (Nordita)
In the same journal
Journal of Cosmology and Astroparticle Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf