Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fluoxetine Affects Differentiation of Midbrain Dopaminergic Neurons In Vitro
Show others and affiliations
Number of Authors: 82018 (English)In: Molecular Pharmacology, ISSN 0026-895X, E-ISSN 1521-0111, Vol. 94, no 4, p. 1220-1231Article in journal (Refereed) Published
Abstract [en]

Recent meta-analyses found an association between prenatal exposure to the antidepressant fluoxetine (FLX) and an increased risk of autism in children. This developmental disorder has been related to dysfunctions in the brains' rewards circuitry, which, in turn, has been linked to dysfunctions in dopaminergic (DA) signaling. The present study investigated if FLX affects processes involved in dopaminergic neuronal differentiation. Mouse neuronal precursors were differentiated into midbrain dopaminergic precursor cells (mDPCs) and concomitantly exposed to clinically relevant doses of FLX. Subsequently, dopaminergic precursors were evaluated for expression of differentiation and stemness markers using quantitative polymerase chain reaction. FLX treatment led to increases in early regional specification markers orthodenticle homeobox 2 (Otx2) and homeobox engrailed-1 and -2 (En1 and En2). On the other hand, two transcription factors essential for midbrain dopaminergic (mDA) neurogenesis, LIM homeobox transcription factor 1 alpha (Lmx1a) and paired-like homeodomain transcription factor 3 (Pitx3) were downregulated by FLX treatment. The stemness marker nestin (Nes) was increased, whereas the neuronal differentiation marker beta 3-tubulin (Tubb3) decreased. Additionally, we observed that FLX modulates the expression of several genes associated with autism spectrum disorder and downregulates the estrogen receptors (ERs) alpha and beta. Further investigations using ER beta knockout (BERKO) mDPCs showed that FLX had no or even opposite effects on several of the genes analyzed. These findings suggest that FLX affects differentiation of the dopaminergic system by increasing production of dopaminergic precursors, yet decreasing their maturation, partly via interference with the estrogen system.

Place, publisher, year, edition, pages
2018. Vol. 94, no 4, p. 1220-1231
National Category
Neurosciences Computer and Information Sciences
Identifiers
URN: urn:nbn:se:su:diva-161025DOI: 10.1124/mol.118.112342ISI: 000445669700013PubMedID: 30115672OAI: oai:DiVA.org:su-161025DiVA, id: diva2:1255834
Available from: 2018-10-15 Created: 2018-10-15 Last updated: 2019-04-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Norinder, Ulf
By organisation
Department of Computer and Systems Sciences
In the same journal
Molecular Pharmacology
NeurosciencesComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf