Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Number of Authors: 22018 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 865, no 2, article id 81Article in journal (Refereed) Published
Abstract [en]

The details of the physical mechanism that drives core-collapse supernovae (CCSNe) remain uncertain. While there is an emerging consensus on the qualitative outcome of detailed CCSN mechanism simulations in 2D, only recently have high-fidelity 3D simulations become possible. Here we present the results of an extensive set of 3D CCSN simulations using high-fidelity multidimensional neutrino transport, high-resolution hydrodynamics, and approximate general relativistic gravity. We employ a state-of-the-art 20 M-circle dot progenitor generated using Modules for Experiments in Stellar Astrophysics, and the SFHo equation of state. While none of our 3D CCSN simulations explode within similar to 500 ms after core bounce, we find that the presence of large-scale aspherical motion in the Si and O shells aid shock expansion and bring the models closer to the threshold of explosion. We also find some dependence on resolution and geometry (octant versus full 4 pi). As has been noted in other recent works, we find that the post-shock turbulence plays an important role in determining the overall dynamical evolution of our simulations. We find a strong standing accretion shock instability (SASI) that develops at late times. The SASI produces transient shock expansions, but these do not result in any explosions. We also report that for a subset of our simulations, we find conclusive evidence for the lepton-number emission self-sustained asymmetry, which until now has not been confirmed by independent simulation codes. Both the progenitor asphericities and the SASI-induced transient shock expansion phases generate transient gravitational waves and neutrino signal modulations via perturbations of the protoneutron star by turbulent motions.

Place, publisher, year, edition, pages
2018. Vol. 865, no 2, article id 81
Keywords [en]
convection, hydrodynamics, methods: numerical, stars: massive, supernovae: general, turbulence
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-161022DOI: 10.3847/1538-4357/aadcf7ISI: 000445743300001OAI: oai:DiVA.org:su-161022DiVA, id: diva2:1255846
Available from: 2018-10-15 Created: 2018-10-15 Last updated: 2018-10-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
O'Connor, Evan P.
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astrophysical Journal
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf