Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Planck intermediate results LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect
Show others and affiliations
Number of Authors: 1432018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 617, article id A48Article in journal (Refereed) Published
Abstract [en]

Using the Planck full-mission data, we present a detection of the temperature (and therefore velocity) dispersion due to the kinetic Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive a matched filter and then convolve it with the Planck foreground-cleaned 2D- ILC maps. By using the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we determine the normalized rms dispersion of the temperature fluctuations at the positions of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical estimator of the signal, determining that the normalized mean temperature dispersion of 1526 clusters is <(Delta T/T)(2))> = (1.64 +/- 0.48) x 10(-11). However, comparison with analytic calculations and simulations suggest that around 0.7 sigma of this result is due to cluster lensing rather than the kSZ effect. By correcting this, the temperature dispersion is measured to be <(Delta T/T)(2))> = (1.35 +/- 0.48) x 10(-11), which gives a detection at the 2.8 sigma level. We further convert uniform-weight temperature dispersion into a measurement of the line-of-sight velocity dispersion, by using estimates of the optical depth of each cluster (which introduces additional uncertainty into the estimate). We find that the velocity dispersion is (v(2)) = (123 000 +/- 71 000) (km s(-1))(2), which is consistent with findings from other large-scale structure studies, and provides direct evidence of statistical homogeneity on scales of 600 h(-1) Mpc. Our study shows the promise of using cross-correlations of the kSZ effect with large-scale structure in order to constrain the growth of structure.

Place, publisher, year, edition, pages
2018. Vol. 617, article id A48
Keywords [en]
cosmic background radiation, large-scale structure of Universe, galaxies: clusters: general, methods: data analysis
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-161055DOI: 10.1051/0004-6361/201731489ISI: 000445284900001OAI: oai:DiVA.org:su-161055DiVA, id: diva2:1255994
Available from: 2018-10-15 Created: 2018-10-15 Last updated: 2018-10-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Akrami, Y.Gerbino, MartinaGudmundsson, Jón E.Handley, W.
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)Nordic Institute for Theoretical Physics (Nordita)
In the same journal
Astronomy and Astrophysics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 76 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf