Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 72018 (English)In: Environmental Evidence, ISSN 2047-2382, E-ISSN 2047-2382, Vol. 7, no 1, article id UNSP 4Article, review/survey (Refereed) Published
Abstract [en]

Background: There is a concern that continued emissions of man-made per-and polyfluoroalkyl substances (PFASs) may cause environmental and human health effects. Now widespread in human populations and in the environment, several PFASs are also present in remote regions of the world, but the environmental transport and fate of PFASs are not well understood. Phasing out the manufacture of some types of PFASs started in 2000 and further regulatory and voluntary actions have followed. The objective of this review is to understand the effects of these actions on global scale PFAS concentrations. Methods: Searches for primary research studies reporting on temporal variations of PFAS concentrations were performed in bibliographic databases, on the internet, through stakeholder contacts and in review bibliographies. No time, document type, language or geographical constraints were applied in the searches. Relevant subjects included human and environmental samples. Two authors screened all retrieved articles. Dual screening of 10% of the articles was performed at title/abstract and full-text levels by all authors. Kappa tests were used to test consistency. Relevant articles were critically appraised by four reviewers, with double checking of 20% of the articles by a second reviewer. Meta-analysis of included temporal trends was considered but judged to not be appropriate. The trends were therefore discussed in a narrative synthesis. Results: Available evidence suggests that human concentrations of perfluorooctane sulfonate (PFOS), perfluorodecane sulfonate (PFDS), and perfluorooctanoic acid (PFOA) generally are declining, while previously increasing concentrations of perfluorohexane sulfonate (PFHxS) have begun to level off. Rapid declines for PFOS-precursors (e.g. perfluorooctane sulfonamide, FOSA) have also been consistently observed in human studies. In contrast, limited data indicate that human concentrations of PFOS and PFOA are increasing in China where the production of these substances has increased. Human concentrations of longer-chained perfluoroalkyl carboxylic acids (PFCAs) with 9-14 carbon atoms are generally increasing or show insignificant trends with too low power to detect a trend. For abiotic and biological environmental samples there are no clear patterns of declining trends. Most substances show mixed results, and a majority of the trends are insignificant with low power to detect a trend. Conclusions: For electrochemically derived PFASs, including PFOS and PFOA, most human studies in North America and Europe show consistent statistically significant declines. This contrasts with findings in wildlife and in abiotic environmental samples, suggesting that declining PFOS, PFOS-precursor and PFOA concentrations in humans likely resulted from removal of certain PFASs from commercial products including paper and board used in food packaging. Increasing concentrations of long-chain PFCAs in most matrices, and in most regions, is likely due to increased use of alternative PFASs. Continued temporal trend monitoring in the environment with well-designed studies with high statistical power are necessary to evaluate the effectiveness of past and continuing regulatory mitigation measures. For humans, more temporal trend studies are needed in regions where manufacturing is most intense, as the one human study available in China is much different than in North America or Europe.

Place, publisher, year, edition, pages
2018. Vol. 7, no 1, article id UNSP 4
Keywords [en]
Perfluoroalkane acids, PFOA, PFOS, Temporal trends, Phase-out, Source, Emission, Environmental fate, Regulation, Concentration
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-161227DOI: 10.1186/s13750-017-0114-yISI: 000446165500001OAI: oai:DiVA.org:su-161227DiVA, id: diva2:1257160
Available from: 2018-10-19 Created: 2018-10-19 Last updated: 2018-10-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
de Wit, Cynthia A.Cousins, Ian T.Johansson, Jana H.Martin, Jonathan W.
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Evidence
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf