Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of the Porous Architecture and Properties of Anisotropic Nanocellulose Foams: A Novel Approach to Assess the Quality of Cellulose Nanofibrils (CNFs)
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0001-7402-0088
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0002-8259-4070
Number of Authors: 42018 (English)In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 6, no 9, p. 11959-11967Article in journal (Refereed) Published
Abstract [en]

Cellulose nanofibrils (CNFs) are a unique nanomaterial because of their abundant, renewable, and biocompatible origin. Compared with synthetic nanoparticles, CNFs are commonly produced from cellulose fibers (e.g., wood pulp) by repetitive high-shear mechanical disintegration. Yet, this process is still highly demanding in energy and costly, slowing down the large-scale production and commercialization of CNFs. Reducing the energy consumption during fibers fibrillation without using any chemical or enzymatic pretreatments while sustaining the CNF quality is challenging. Here, we show that the anisotropic properties of the CNF foams are directly connected to the degree of nanofibrillation of the cellulose fibers. CNFs were produced from wood pulps using a grinder at increasing specific energy consumptions. The anisotropic CNF foams were made by directional ice templating. The porous architecture, the compressive behavior of the foams, and the CNF alignment in the foam cell walls were correlated to the degree of fibrillation. A particular value of specific energy consumption was identified with respect to the highest obtained foam properties and CNF alignment. This value indicated that the optimal degree of fibrillation, and thus CNF quality, was achieved for the studied cellulose pulp. Our approach is a straightforward tool to evaluate the CNF quality and a promising method for the benchmarking of different CNF grades.

Place, publisher, year, edition, pages
2018. Vol. 6, no 9, p. 11959-11967
Keywords [en]
Nanocellulose, Cellulose nanofibril, Energy consumption, Degree of fibrillation, Ice templating, Anisotropic foam, green & sustainable science & technology
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-161129DOI: 10.1021/acssuschemeng.8b02278ISI: 000443924100094OAI: oai:DiVA.org:su-161129DiVA, id: diva2:1258398
Available from: 2018-10-24 Created: 2018-10-24 Last updated: 2019-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Kriechbaum, KonstantinMunier, PierreApostolopoulou-Kalkavoura, VarvaraLavoine, Nathalie
By organisation
Department of Materials and Environmental Chemistry (MMK)
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 174 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf