Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Black hole-neutron star mergers using a survey of finite-temperature equations of state
Show others and affiliations
Number of Authors: 102018 (English)In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 6, article id 063009Article in journal (Refereed) Published
Abstract [en]

Each of the potential signals from a black hole-neutron star merger should contain an imprint of the neutron star equation of state: gravitational waves via its effect on tidal disruption, the kilonova via its effect on the ejecta, and the gamma-ray burst via its effect on the remnant disk. These effects have been studied by numerical simulations and quantified by semianalytic formulas. However, most of the simulations on which these formulas are based use equations of state without finite temperature and composition-dependent nuclear physics. In this paper, we simulate black hole-neutron star mergers varying both the neutron star mass and the equation of state, using three finite-temperature nuclear models of varying stiffness. Our simulations largely vindicate formulas for ejecta properties but do not find the expected dependence of disk mass on neutron star compaction. We track the early evolution of the accretion disk, largely driven by shocking and fallback inflow, and do find notable equation-of-state effects on the structure of this early-time, neutrino-bright disk.

Place, publisher, year, edition, pages
2018. Vol. 98, no 6, article id 063009
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-161087DOI: 10.1103/PhysRevD.98.063009ISI: 000444572700003OAI: oai:DiVA.org:su-161087DiVA, id: diva2:1259883
Available from: 2018-10-31 Created: 2018-10-31 Last updated: 2018-10-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
O'Connor, Evan
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physical Review D: covering particles, fields, gravitation, and cosmology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf