Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exceptional links and twisted Fermi ribbons in non-Hermitian systems
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0002-9739-2930
Number of Authors: 22018 (English)In: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 98, no 4, article id 042114Article in journal (Refereed) Published
Abstract [en]

The generic nature of band touching points in three-dimensional band structures is at the heart of the rich phenomenology, topological stability, and novel Fermi arc surface states associated with Weyl semimetals. Here we report on the corresponding scenario emerging in systems effectively described by non-Hermitian Hamiltonians. Remarkably, three-dimensional non-Hermitian systems have generic band touching along one-dimensional closed contours, forming exceptional rings and links in reciprocal space. The associated Seifert surfaces support open Fermi ribbons where the real part of the energy gap vanishes, providing a novel class of higher-dimensional bulk generalizations of Fermi arcs which are characterized by an integer twist number. These results have possible applications to a plethora of physical settings, ranging from mechanical systems and optical metamaterials with loss and gain to heavy fermion materials with finite-lifetime quasiparticles. In particular, photonic crystals provide fertile ground for simulating the exuberant phenomenology of exceptional links and their concomitant Fermi ribbons.

Place, publisher, year, edition, pages
2018. Vol. 98, no 4, article id 042114
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-161938DOI: 10.1103/PhysRevA.98.042114ISI: 000447291200003OAI: oai:DiVA.org:su-161938DiVA, id: diva2:1262588
Available from: 2018-11-12 Created: 2018-11-12 Last updated: 2019-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Carlström, JohanBergholtz, Emil J.
By organisation
Department of Physics
In the same journal
Physical Review A: covering atomic, molecular, and optical physics and quantum information
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf