Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simultaneous exposure to a pulsed and a prolonged anthropogenic stressor can alter consumer multifunctionality
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Swiss Federal Institute of Aquatic Science and Technology, Switzerland.
Show others and affiliations
Number of Authors: 52018 (English)In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 127, no 10, p. 1437-1448Article in journal (Refereed) Published
Abstract [en]

Ecosystems face multiple anthropogenic threats globally, and the effects of these environmental stressors range from individual-level organismal responses to altered system functioning. Understanding the combined effects of stressors on process rates mediated by individuals in ecosystems would greatly improve our ability to predict organismal multifunctionality (e.g. multiple consumer-mediated functions). We conducted a laboratory experiment to test direct and indirect, as well as immediate and delayed effects of a heat wave (pulsed stress) and micropollutants (MPs) (prolonged stress) on individual consumers (the great pond snail Lymnaea stagnalis) and their multifunctionality (i.e. consumption of basal resources, growth, reproduction, nutrient excretion and organic-matter cycling). We found that stressful conditions increased the process rates of multiple functions mediated by individual consumers. Specifically, the artificial heat wave increased process rates in the majority of the quantified functions (either directly or indirectly), whereas exposure to MPs increased consumption of basal resources which led to increases in the release of nutrients and fine particulate organic matter. Moreover, snails exposed to a heat wave showed decreased reproduction and nutrient excretion after the heat-wave, indicating the potential for ecologically relevant delayed effects. Our study indicates that the immediate and delayed effects of stressors on individual organisms may directly and indirectly impact multiple ecosystem functions. In particular, delayed effects of environmental stress on individual consumers may cumulatively impede recovery due to decreased functioning following a perturbation. Reconciling these results with studies incorporating responses at higher levels of biological complexity will enhance our ability to forecast how individual responses upscale to ecosystem multifunctionality.

Place, publisher, year, edition, pages
2018. Vol. 127, no 10, p. 1437-1448
Keywords [en]
ecosystem processes, environmental stress, grazer, heat wave, micropollutants
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-162024DOI: 10.1111/oik.05310ISI: 000446267600004OAI: oai:DiVA.org:su-162024DiVA, id: diva2:1263292
Available from: 2018-11-15 Created: 2018-11-15 Last updated: 2018-11-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Salo, TiinaStamm, Christian
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
Oikos
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf