Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic
Show others and affiliations
Number of Authors: 172018 (English)In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 24, no 11, p. 5188-5204Article in journal (Refereed) Published
Abstract [en]

Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a similar to 100-km(2) sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from --300 g C m(-2) year(-1) [net uptake] in a willow fen to 3 g Cm-2 year(-1) [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g Cm-2 year(-1) at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.

Place, publisher, year, edition, pages
2018. Vol. 24, no 11, p. 5188-5204
Keywords [en]
ecosystem modeling, methane, net ecosystem CO2 exchange, peatland, permafrost, regional carbon balance, Russia, Tundra
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-162106DOI: 10.1111/gcb.14421ISI: 000447760300016PubMedID: 30101501OAI: oai:DiVA.org:su-162106DiVA, id: diva2:1263366
Available from: 2018-11-15 Created: 2018-11-15 Last updated: 2018-11-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Treat, Claire C.Voigt, CarolinaTan, ZeliBiasi, ChristinaHugelius, Gustaf
By organisation
Department of Physical Geography
In the same journal
Global Change Biology
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf