Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Arsenic and high affinity phosphate uptake gene distribution in shallow submarine hydrothermal sediments
Stockholm University, Faculty of Science, Department of Geological Sciences. Cardiff University, UK.
Stockholm University, Faculty of Science, Department of Geological Sciences.ORCID iD: 0000-0002-7578-3455
Show others and affiliations
Number of Authors: 82018 (English)In: Biogeochemistry, ISSN 0168-2563, E-ISSN 1573-515X, Vol. 141, no 1, p. 41-62Article in journal (Refereed) Published
Abstract [en]

The toxicity of arsenic (As) towards life on Earth is apparent in the dense distribution of genes associated with As detoxification across the tree of life. The ability to defend against As is particularly vital for survival in As-rich shallow submarine hydrothermal ecosystems along the Hellenic Volcanic Arc (HVA), where life is exposed to hydrothermal fluids containing up to 3000 times more As than present in seawater. We propose that the removal of dissolved As and phosphorus (P) by sulfide and Fe(III)(oxyhydr)oxide minerals during sediment-seawater interaction, produces nutrient-deficient porewaters containing<2.0ppb P. The porewater arsenite-As(III) to arsenate-As(V) ratios, combined with sulfide concentration in the sediment and/or porewater, suggest a hydrothermally-induced seafloor redox gradient. This gradient overlaps with changing high affinity phosphate uptake gene abundance. High affinity phosphate uptake and As cycling genes are depleted in the sulfide-rich settings, relative to the more oxidizing habitats where mainly Fe(III)(oxyhydr)oxides are precipitated. In addition, a habitat-wide low As-respiring and As-oxidizing gene content relative to As resistance gene richness, suggests that As detoxification is prioritized over metabolic As cycling in the sediments. Collectively, the data point to redox control on Fe and S mineralization as a decisive factor in the regulation of high affinity phosphate uptake and As cycling gene content in shallow submarine hydrothermal ecosystems along the HVA.

Place, publisher, year, edition, pages
2018. Vol. 141, no 1, p. 41-62
Keywords [en]
Arsenic biogeochemistry, Arsenic speciation, Phosphate biogeochemistry, Hydrothermal activity
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-161997DOI: 10.1007/s10533-018-0500-8ISI: 000447723800003OAI: oai:DiVA.org:su-161997DiVA, id: diva2:1264230
Available from: 2018-11-19 Created: 2018-11-19 Last updated: 2018-11-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Chi Fru, ErnestCallac, NolwennPosth, Nicole R.Broman, Curt
By organisation
Department of Geological Sciences
In the same journal
Biogeochemistry
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf