Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22
Show others and affiliations
Number of Authors: 352018 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 866, no 1, article id 65Article in journal (Refereed) Published
Abstract [en]

We present the discovery and measurements of a gravitationally lensed supernova (SN) behind the galaxy cluster MOO J1014+0038. Based on multi-band Hubble Space Telescope and Very Large Telescope (VLT) photometry of the supernova, and VLT spectroscopy of the host galaxy, we find a 97.5% probability that this SN is a SN Ia, and a 2.5% chance of a CC SN. Our typing algorithm combines the shape and color of the light curve with the expected rates of each SN type in the host galaxy. With a redshift of 2.2216, this is the highest redshift SN. Ia discovered with a spectroscopic host-galaxy redshift. A further distinguishing feature is that the lensing cluster, at redshift 1.23, is the most distant to date to have an amplified SN. The SN lies in the middle of the color and light-curve shape distributions found at lower redshift, disfavoring strong evolution to z = 2.22. We estimate an amplification due to gravitational lensing of 2.8(-0.5)(+0.6) (1.10 +/- 0.23 mag)-compatible with the value estimated from the weak-lensing-derived mass and the mass-concentration relation from Lambda CDM simulations-making it the most amplified SN Ia discovered behind a galaxy cluster.

Place, publisher, year, edition, pages
2018. Vol. 866, no 1, article id 65
Keywords [en]
cosmology: observations, galaxies: clusters: individual (MOO J1014+0038) supernovae: general, gravitational lensing: weak
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-161970DOI: 10.3847/1538-4357/aad565ISI: 000447585000001OAI: oai:DiVA.org:su-161970DiVA, id: diva2:1265018
Available from: 2018-11-22 Created: 2018-11-22 Last updated: 2018-11-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Rubin, D.Amanullah, RahmanGoobar, Ariel
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astrophysical Journal
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf