Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3)
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0003-4319-1540
Show others and affiliations
Number of Authors: 52012 (English)In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 2, p. 725-730Article in journal (Refereed) Published
Abstract [en]

Bismuth telluride (Bi2Te3) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications at ambient temperature. However, its dimensionless figure-of-merit-ZT around 1 limits the large-scale industrial applications. Recent studies indicate that nanostructuring can enhance ZT while keeping the material form of bulk by employing an advanced synthetic process accompanied with novel consolidation techniques. Here, we report on bulk nanostructured (NS) undoped Bi2Te3 prepared via a promising chemical synthetic route. Spark plasma sintering has been employed for compaction and sintering of Bi2Te3 nanopowders, resulting in very high densification (>97%) while preserving the nanostructure. The average grain size of the final compacts was obtained as 90 +/- 5 nm as calculated from electron micrographs. Evaluation of transport properties showed enhanced Seebeck coefficient (-120 mu V K-1) and electrical conductivity compared to the literature state-of-the-art (30% enhanced power factor), especially in the low temperature range. An improved ZT for NS bulk undoped Bi2Te3 is achieved with a peak value of similar to 1.1 at 340 K.

Place, publisher, year, edition, pages
2012. Vol. 22, no 2, p. 725-730
National Category
Chemical Sciences Materials Engineering
Identifiers
URN: urn:nbn:se:su:diva-162433DOI: 10.1039/c1jm13880dISI: 000299020000062OAI: oai:DiVA.org:su-162433DiVA, id: diva2:1267600
Available from: 2018-12-03 Created: 2018-12-03 Last updated: 2018-12-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Saleemi, MohsinToprak, Muhammet S.Johnsson, Mats
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Materials Chemistry
Chemical SciencesMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf