Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Connecting young star clusters to CO molecular gas in NGC 7793 with ALMA-LEGUS
Show others and affiliations
Number of Authors: 232018 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 481, no 1, p. 1016-1027Article in journal (Refereed) Published
Abstract [en]

We present an investigation of the relationship between giant molecular cloud (GMC) properties and the associated stellar clusters in the nearby flocculent galaxy NGC 7793. We combine the star cluster catalogue from the HST LEGUS (Legacy ExtraGalactic UV Survey) programme with the 15 pc resolution ALMA CO(2-1) observations. We find a strong spatial correlation between young star clusters and GMCs such that all clusters still associated with a GMC are younger than 11 Myr and display a median age of 2 Myr. The age distribution increases gradually as the cluster-GMC distance increases, with star clusters that are spatially unassociated with molecular gas exhibiting a median age of 7 Myr. Thus, star clusters are able to emerge from their natal clouds long before the time-scale required for clouds to disperse. To investigate if the hierarchy observed in the stellar components is inherited from the GMCs, we quantify the amount of clustering in the spatial distributions of the components and find that the star clusters have a fractal dimension slope of -0.35 +/- 0.03, significantly more clustered than the molecular cloud hierarchy with slope of -0.18 +/- 0.04 over the range 40-800 pc. We find, however, that the spatial clustering becomes comparable in strength for GMCs and star clusters with slopes of -0.44 +/- 0.03 and -0.45 +/- 0.06, respectively, when we compare massive (> 10(5) M-circle dot) GMCs to massive and young star clusters. This shows that massive star clusters trace the same hierarchy as their parent GMCs, under the assumption that the star formation efficiency is a few per cent.

Place, publisher, year, edition, pages
2018. Vol. 481, no 1, p. 1016-1027
Keywords [en]
ISM: clouds, ISM: structure, galaxies: individual: NGC 7793, galaxies: star clusters: general, galaxies: stellar content, galaxies: structure
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-162992DOI: 10.1093/mnras/sty2154ISI: 000449651400072OAI: oai:DiVA.org:su-162992DiVA, id: diva2:1270429
Available from: 2018-12-13 Created: 2018-12-13 Last updated: 2018-12-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Adamo, AngelaCook, D. O.Messa, Matteo
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Monthly notices of the Royal Astronomical Society
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf