Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantum Transport by Spin-Polarized Edge States in Graphene Nanoribbons in the Quantum Spin Hall and Quantum Anomalous Hall Regimes
Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
Number of Authors: 42018 (English)In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 12, no 11, article id 1800210Article in journal (Refereed) Published
Abstract [en]

Using the non-equilibrium Green's function method and the Keldysh formalism, we study the effects of spin-orbit interactions and time-reversal symmetry breaking exchange fields on non-equilibrium quantum transport in graphene armchair nanoribbons. We identify signatures of the quantum spin Hall (QSH) and the quantum anomalous Hall (QAH) phases in non-equilibrium edge transport by calculating the spin-resolved real space charge density and local currents at the nanoribbon edges. We find that the QSH phase, which is realized in a system with intrinsic spin-orbit coupling, is characterized by chiral counter-propagating local spin currents summing up to a net charge flow with opposite spin polarization at the edges. In the QAH phase, emerging in the presence of Rashba spin-orbit coupling and a ferromagnetic exchange field, two chiral edge channels with opposite spins propagate in the same direction at each edge, generating an unpolarized charge current and a quantized Hall conductance G = 2e(2)/h. Increasing the intrinsic spin-orbit coupling causes a transition from the QAH to the QSH phase, evinced by characteristic changes in the non-equilibrium edge transport. In contrast, an antiferromagnetic exchange field can coexist with a QSH phase, but can never induce a QAH phase due to a symmetry that combines time-reversal and sublattice translational symmetry.

Place, publisher, year, edition, pages
2018. Vol. 12, no 11, article id 1800210
Keywords [en]
graphene nanoribbons, quantum anomalous Hall effect, quantum spin Hall effect, topological insulators
National Category
Materials Engineering Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-162987DOI: 10.1002/pssr.201800210ISI: 000450130300007OAI: oai:DiVA.org:su-162987DiVA, id: diva2:1270518
Available from: 2018-12-13 Created: 2018-12-13 Last updated: 2018-12-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Pertsova, Anna
By organisation
Nordic Institute for Theoretical Physics (Nordita)
In the same journal
Physica Status Solidi. Rapid Research Letters
Materials EngineeringPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf