Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Model Intercomparison of Atmospheric Cs-137 From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data
Show others and affiliations
Number of Authors: 212018 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 123, no 20, p. 11748-11765Article in journal (Refereed) Published
Abstract [en]

A model intercomparison of the atmospheric dispersion of cesium-137 (Cs-137) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric Cs-137 in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric Cs-137 events observed by measurements, and the figure of merit in space for the total deposition of Cs-137 exceeded 80. The lower score of the atmospheric Cs-137 than that of the deposition originated from the difference in timing between observed and simulated atmospheric Cs-137. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric Cs-137 events. The results further revealed that differences in Cs-137 concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric Cs-137, and those with strong diffusion succeeded in capturing the high Cs-137 concentrations observed; however, they also tended to overestimate the concentrations.

Place, publisher, year, edition, pages
2018. Vol. 123, no 20, p. 11748-11765
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-163725DOI: 10.1029/2018JD029144ISI: 000452000300029OAI: oai:DiVA.org:su-163725DiVA, id: diva2:1278966
Available from: 2019-01-15 Created: 2019-01-15 Last updated: 2019-01-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Sato, YousukeTerada, HiroakiKondo, HiroakiQuélo, Denisvon Schoenberg, Pontus
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Journal of Geophysical Research - Atmospheres
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf