Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temperature constraints from inversions of synthetic solar optical, UV, and radio spectra
Stockholm University, Faculty of Science, Department of Astronomy.
Stockholm University, Faculty of Science, Department of Astronomy.
Stockholm University, Faculty of Science, Department of Astronomy.
Number of Authors: 32018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 620, article id A124Article in journal (Refereed) Published
Abstract [en]

Context. High-resolution observations of the solar chromosphere at millimeter wavelengths are now possible with the Atacama Large Millimeter Array (ALMA), bringing with them the promise of tackling many open problems in solar physics. Observations from other ground and space-based telescopes will greatly benefit from coordinated endeavors with ALMA, yet the diagnostic potential of combined optical, ultraviolet and mm observations has remained mostly unassessed. Aims. In this paper we investigate whether mm-wavelengths could aid current inversion schemes to retrieve a more accurate representation of the temperature structure of the solar atmosphere. Methods. We performed several non-LTE inversion experiments of the emergent spectra from a snapshot of 3D radiation-MHD simulation. We included common line diagnostics such as Ca II K, 8542 angstrom and Mg II h and k, taking into account partial frequency redistribution effects, along with the continuum around 1.2 mm and 3 mm. Results. We find that including the mm-continuum in inversions allows a more accurate inference of temperature as function of optical depth. The addition of ALMA bands to other diagnostics should improve the accuracy of the inferred chromospheric temperatures between log tau similar to [-6, -4.5] where the Ca II and Mg II lines are weakly coupled to the local conditions. However, we find that simultaneous multiatom, non-LTE inversions of optical and UV lines present equally strong constraints in the lower chromosphere and thus are not greatly improved by the 1.2 mm band. Nonetheless, the 3 mm band is still needed to better constrain the mid-upper chromosphere.

Place, publisher, year, edition, pages
2018. Vol. 620, article id A124
Keywords [en]
Sun: atmosphere, Sun: chromosphere, Sun: radio radiation, radiative transfer
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-163701DOI: 10.1051/0004-6361/201833664ISI: 000452485400001OAI: oai:DiVA.org:su-163701DiVA, id: diva2:1280254
Available from: 2019-01-18 Created: 2019-01-18 Last updated: 2019-01-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
da Silva Santos, Joäo Manuelde la Cruz Rodriguez, JaimeLeenaarts, Jorrit
By organisation
Department of Astronomy
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf