Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming
Show others and affiliations
Number of Authors: 52018 (English)In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 14, no 12, article id e1007846Article in journal (Refereed) Published
Abstract [en]

During neuronal development, beta-actin serves an important role in growth cone mediated axon guidance. Consistent with this notion, in vivo ablation of the beta-actin gene leads to abnormalities in the nervous system. However, whether beta-actin is involved in the regulation of neuronal gene programs is not known. In this study, we directly reprogramed beta-actin(+/+) WT, beta-actin(+/-) HET and beta-actin(-/-) KO mouse embryonic fibroblast (MEFs) into chemically induced neurons (CiNeurons). Using RNA-seq analysis, we profiled the transcriptome changes among the CiNeurons. We discovered that induction of neuronal gene programs was impaired in KO CiNeurons in comparison to WT ones, whereas HET CiNeurons showed an intermediate levels of induction. ChIP-seq analysis of heterochromatin markers demonstrated that the impaired expression of neuronal gene programs correlated with the elevated H3K9 and H3K27 methylation levels at gene loci in beta-actin deficient MEFs, which is linked to the loss of chromatin association of the BAF complex ATPase subunit Brg1. Together, our study shows that heterochromatin alteration in beta-actin null MEFs impedes the induction of neuronal gene programs during direct reprograming. These findings are in line with the notion that H3K9Me3-based heterochromatin forms a major epigenetic barrier during cell fate change.

Place, publisher, year, edition, pages
2018. Vol. 14, no 12, article id e1007846
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-165765DOI: 10.1371/journal.pgen.1007846ISI: 000455099000029PubMedID: 30557298OAI: oai:DiVA.org:su-165765DiVA, id: diva2:1285454
Available from: 2019-02-04 Created: 2019-02-04 Last updated: 2019-02-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jankauskas, RobertasPercipalle, Piergiorgio
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
PLoS Genetics
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf