Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
E and B Polarizations from Inhomogeneous and Solar Surface Turbulence
Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Stockholm University, Faculty of Science, Department of Astronomy. University of Colorado, USA; Carnegie Mellon University, USA.
Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
Show others and affiliations
Number of Authors: 72019 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 870, no 2, article id 87Article in journal (Refereed) Published
Abstract [en]

Gradient- and curl-type or E- and B-type polarizations have been routinely analyzed to study the physics contributing to the cosmic microwave background polarization and galactic foregrounds. They characterize the parity-even and parity-odd properties of the underlying physical mechanisms, such as, for example, hydromagnetic turbulence in the case of dust polarization. Here, we study spectral correlation functions characterizing the parity-even and parity-odd parts of linear polarization for homogeneous and inhomogeneous turbulence to show that only the inhomogeneous helical case can give rise to a parity-odd polarization signal. We also study nonhelical turbulence and suggest that a strong non-vanishing (here negative) skewness of the E polarization is responsible for an enhanced ratio of the EE to the BB (quadratic) correlation in both the helical and nonhelical cases. This could explain the enhanced EE/BB ratio observed recently for dust polarization. We close with a preliminary assessment of using the linear polarization of the Sun to characterize its helical turbulence without being subjected to the pi ambiguity that magnetic inversion techniques have to address.

Place, publisher, year, edition, pages
2019. Vol. 870, no 2, article id 87
Keywords [en]
dynamo, magnetohydrodynamics (MHD), Sun: magnetic fields, turbulence
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-165668DOI: 10.3847/1538-4357/aaf383ISI: 000455820100033OAI: oai:DiVA.org:su-165668DiVA, id: diva2:1286261
Available from: 2019-02-06 Created: 2019-02-06 Last updated: 2019-02-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Brandenburg, AxelBracco, Andrea
By organisation
Nordic Institute for Theoretical Physics (Nordita)Department of Astronomy
In the same journal
Astrophysical Journal
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf