Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interconnectivity Between Volume Transports Through Arctic Straits
Stockholm University, Faculty of Science, Department of Geological Sciences.
Stockholm University, Faculty of Science, Department of Meteorology .
Show others and affiliations
Number of Authors: 82018 (English)In: Journal of Geophysical Research - Oceans, ISSN 2169-9275, E-ISSN 2169-9291, Vol. 123, no 12, p. 8714-8729Article in journal (Refereed) Published
Abstract [en]

Arctic heat and freshwater budgets are highly sensitive to volume transports through the Arctic-Subarctic straits. Here we study the interconnectivity of volume transports through Arctic straits in three models; two coupled global climate models, one with a third-degree horizontal ocean resolution (High Resolution Global Environmental Model version 1.1 [HiGEM1.1]) and one with a twelfth-degree horizontal ocean resolution (Hadley Centre Global Environment Model 3 [HadGEM3]), and one ocean-only model with an idealized polar basin (tenth-degree horizontal resolution). The two global climate models indicate that there is a strong anticorrelation between the Bering Strait throughflow and the transport through the Nordic Seas, a second strong anticorrelation between the transport through the Canadian Arctic Archipelago and the Nordic Seas transport, and a third strong anticorrelation is found between the Fram Strait and the Barents Sea throughflows. We find that part of the strait correlations is due to the strait transports being coincidentally driven by large-scale atmospheric forcing patterns. However, there is also a role for fast wave adjustments of some straits flows to perturbations in other straits since atmospheric forcing of individual strait flows alone cannot lead to near mass balance fortuitously every year. Idealized experiments with an ocean model (Nucleus for European Modelling of the Ocean version 3.6) that investigate such causal strait relations suggest that perturbations in the Bering Strait are compensated preferentially in the Fram Strait due to the narrowness of the western Arctic shelf and the deeper depth of the Fram Strait. Plain Language Summary The Arctic is one of the most fragile places on the Earth, facing double the rate of warming as the rest of the globe. This warming is partly due to melting of sea ice because open water reflects less sunlight than ice. One of the major controls on Arctic sea ice concentration is the heat flowing into the Arctic through its straits. However, due to the harsh conditions in the Arctic, there are limited long-term observations of the currents flowing through these straits. Here we turn to climate models to investigate these Arctic straits flows and in particular focus on how flows into and out of the Arctic balance each other. We find that in some instances specific pairs of strait flows are simultaneously affected by large-scale atmospheric. In other instances, the inflow through one strait flows out through another distant strait because of the way the ocean floor guides the currents. Traditionally, the flows through Arctic straits are studied in relation to local forces such as wind and sea level. Our work suggests value in a more holistic approach; one that also accounts for flow changes in a strait as a response to flow changes in other straits.

Place, publisher, year, edition, pages
2018. Vol. 123, no 12, p. 8714-8729
Keywords [en]
Arctic, ocean circulation, climate modes, strait transports, winds, sea level height
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-166857DOI: 10.1029/2018JC014320ISI: 000456405900004OAI: oai:DiVA.org:su-166857DiVA, id: diva2:1294212
Available from: 2019-03-06 Created: 2019-03-06 Last updated: 2019-03-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
de Boer, Agatha M.Stevens, David P.Chafik, LéonHutchinson, David K.Zhang, Qiong
By organisation
Department of Geological SciencesDepartment of Meteorology Department of Physical Geography
In the same journal
Journal of Geophysical Research - Oceans
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf