Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran
Show others and affiliations
Number of Authors: 52019 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 660, p. 443-458Article in journal (Refereed) Published
Abstract [en]

In north of Iran, flood is one of the most important natural hazards that annually inflict great economic damages on humankind infrastructures and natural ecosystems. The Kiasar watershed is known as one of the critical areas in north of Iran, due to numerous floods and waste of water and soil resources, as well as related economic and ecological losses. However, a comprehensive and systematic research to identify flood-prone areas, which may help to establish management and conservation measures, has not been carried out yet. Therefore, this study tested four methods: evidential belief function (EBF), frequency ratio (FR), Technique for Order Preference by Similarity To ideal Solution (TOPSIS) and Vlse Kriterijumsk Optimizacija Kompromisno Resenje (VIKOR) for flood hazard susceptibility mapping (FHSM) in this area. These were combined in two methodological frameworks involving statistical and multi-criteria decision making approaches. The efficiency of statistical and multi-criteria methods in FHSM were compared by using area under receiver operating characteristic (AUROC) curve, seed cell area index and frequency ratio. A database containing flood inventory maps and flood-related conditioning factors was established for this watershed. The flood inventory maps produced included 132 flood conditions, which were randomly classified into two groups, for training (70%) and validation (30%). Analytical hierarchy process (AHP) indicated that slope, distance to stream and land use/land cover are of key importance in flood occurrence in the study catchment. In validation results, the EBF model had a better prediction rate (0.987) and success rate (0.946) than FR, TOPSIS and VIKOR (prediction rate 0.917, 0.888, and 0.810; success rate 0.939, 0.904, and 0.735, respectively). Based on their frequency ratio and seed cell area index values, all models except VIKOR showed acceptable accuracy of classification.

Place, publisher, year, edition, pages
2019. Vol. 660, p. 443-458
Keywords [en]
Soil erosion, Natural hazard, Environmental management, Modelling, Kiasar watershed
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-166648DOI: 10.1016/j.scitotenv.2019.01.021ISI: 000457725700045PubMedID: 30640112OAI: oai:DiVA.org:su-166648DiVA, id: diva2:1295280
Available from: 2019-03-11 Created: 2019-03-11 Last updated: 2019-03-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Conoscenti, ChristianKalantari, Zahra
By organisation
Department of Physical Geography
In the same journal
Science of the Total Environment
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 716 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf