Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis
Show others and affiliations
Number of Authors: 92018 (English)In: Artificial cells nanomedicine and biotechnology, ISSN 2169-1401, Vol. 46, p. S1123-S1130Article in journal (Refereed) Published
Abstract [en]

Micro/nanostructured TiO2/ZnO coating has been shown to possess multiple functions, including antibacterial activity and bioactivity. Osteoblast-like SaOS-2 cells were employed for evaluating the in vitro osteogenic capacity of this coating and positive results were obtained. However, traditional principles of osseointegration focus only on the osteogenic differentiation alone. The effects of immunomodulation on the osteogenic activity have been largely ignored. In this study, the inflammatory responses of macrophages on the micro/nanostructured TiO2/ZnO coating were investigated. The extract media of macrophage cell line RAW264.7 cultured on the TiO2/ZnO coating were collected as indirect co-culture conditioned media. The osteogenic activity of SaOS-2 cells in the conditioned media was investigated. Adhesion, ALP activity and extracellular mineralization of cells grown in the conditioned media extracted from the micro/nanostructured TiO2/ZnO coating were found to be enhanced, compared to those grown in the conditioned media extracted from the macroporous TiO2 coating. The immune microenvironment produced by the micro/nanostructured TiO2/ZnO coating showed excellent capacity to promote osteogenesis, indicating that this coating could be a promising candidate for implant surface modification in orthopaedic and dental applications. Furthermore, this work could help us understand the interplay between the host immune system and the osteoimmunomodulatory properties of the biomaterials, and optimize the design for coating biomaterials.

Place, publisher, year, edition, pages
2018. Vol. 46, p. S1123-S1130
Keywords [en]
Zinc, micro/nanostructure, macrophage, micro-arc oxidation, osteogenesis, osteoimmunomodulation
National Category
Biomaterials Science Immunology
Identifiers
URN: urn:nbn:se:su:diva-166637DOI: 10.1080/21691401.2018.1446442ISI: 000457049400106PubMedID: 29517404OAI: oai:DiVA.org:su-166637DiVA, id: diva2:1296373
Available from: 2019-03-15 Created: 2019-03-15 Last updated: 2019-03-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Zhang, RanranShen, Zhijian
By organisation
Department of Materials and Environmental Chemistry (MMK)
Biomaterials ScienceImmunology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf