Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In cytochrome c oxidase (CytcO) reduction of O2 to water is linked to uptake of eight protons from the negative side of the membrane: four are substrate protons used to form water and four are pumped across the membrane. In bacterial oxidases, the substrate protons are taken up through the K and the D proton pathways, while the pumped protons are transferred through the D pathway. On the basis of studies with CytcO isolated from bovine heart mitochondria, it was suggested that in mitochondrial CytcOs the pumped protons are transferred though a third proton pathway, the H pathway, rather than throughthe D pathway. Here, we studied these reactions in S. cerevisiae CytcO, which serves as a model of the mammalian counterpart. We analyzed the effect of mutations in the D(Asn99Asp and Ile67Asn) and H pathways (Ser382Ala and Ser458Ala) and investigated the kinetics of electron and proton transfer during the reaction of the reduced CytcO withO2. No effects were observed with the H pathway variants while in the D pathway variants the functional effects were similar to those observed with the R. sphaeroides CytcO. The data indicate that the S. cerevisiae CytcO uses the D pathway for proton uptake and pumping.

Keywords [en]
cytochrome c oxidase, electron transfer, cytochrome aa3, membrane protein, ligand, kinetics, mechanism
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-167129OAI: oai:DiVA.org:su-167129DiVA, id: diva2:1297381
Available from: 2019-03-19 Created: 2019-03-19 Last updated: 2019-03-20Bibliographically approved
In thesis
1. Regulation of proton-coupled electron transfer in cytochrome c oxidase: The role of membrane potential, proton pathways and ATP
Open this publication in new window or tab >>Regulation of proton-coupled electron transfer in cytochrome c oxidase: The role of membrane potential, proton pathways and ATP
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cytochrome c oxidase (CytcO) is the final electron acceptor of the respiratory chain. In this chain a current of electrons, derived from degradation of nutrients, along with protons, are used to reduce oxygen to water. The reaction is exergonic and the excess energy is used to pump protons across the membrane. This proton-coupled electron transfer is regulated, for example, by the membrane potential, the composition of the membrane and the ATP/ADP concentrations. 

Here, we have investigated the mechanism of this regulation. Specifically, we investigated ligand binding to CytcO in mitochondria, which provides mechanistic information about CytcO in its native environment. In addition to CytcO, a water soluble protein, flavohemoglobin (yHb) was found to bind CO and we found that it is localized in the intermembrane space (IMS). We also extracted CytcO from mitochondria without detergent using the styrene maleic acid (SMA) co-polymer. We could show that the SMA-extracted CytcO behaved similarly in its reaction with O2 and CO as CytcO in mitochondria.

In mitochondria and bacterial membranes CytcO transports charges against a transmembrane electrochemical gradient. We induced a membrane potential across sub-mitochondrial particles (SMPs) by addition of ATP and measured single CytcO turnover. Our results indicate that proton transfer, but not electron transfer, across the membrane is affected by the membrane potential.

In yeast CytcO subunit Cox13 has been shown to play a role in ATP/ADP binding to regulate activity. We have solved the structure of Cox13 using NMR and identified the residues that constitute the ATP-binding site, which is located at the C-terminus.

Finally we showed that the main proton-transfer pathways in yeast CytcO function similarly to their bacterial counterparts and that the proposed H-pathway, absent in bacteria, is not responsible for proton translocation in mitochondrial CytcO from S. cerevisiae.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm university, 2019. p. 53
Keywords
cytochrome c oxidase, charge transfer, membrane potential, membrane protein, mitochondria, ATP, proton pump
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-167130 (URN)978-91-7797-624-0 (ISBN)978-91-7797-625-7 (ISBN)
Public defence
2019-05-10, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.

Available from: 2019-04-15 Created: 2019-03-19 Last updated: 2019-03-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Björck, Markus L.Vilhjálmsdóttir, JóhannaNäsvik Öjemyr, Linda
By organisation
Department of Biochemistry and Biophysics
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 307 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf