Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hollow polymer dots: nature-mimicking architecture for efficient photocatalytic hydrogen evolution reaction
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Number of Authors: 42019 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, no 9, p. 4797-4803Article in journal (Refereed) Published
Abstract [en]

Mimicking nature is always beneficial for improving the performance of artificial systems. Artificial photosynthesis for hydrogen production is one of the examples, where we can derive significant inspiration from nature. In this study, polymer dots (Pdots) prepared using photoactive polymer PFODTBT and amphiphilic co-polymer under ultra-sonication exhibited a hollow structure mimicking a photosynthetic bacterial, which was highly beneficial for hydrogen evolution. A systematic study of this structure showed that the polymer shell acts as a biological membrane that maintains a slightly higher pH inside the cavity (pH 0.4) compared to the bulk solution. More importantly, a fast proton diffusion across the porous polymer shell was detected. The photocatalytic activity of hollow nanostructure shows 50 times enhancement of initial hydrogen evolution reaction (HER) rate as compared to solid nanoparticles. Further optimization of the photocatalytic performance was achieved by verifying the decrease in Pdots size from 90 nm to 50 nm, showing a significant increase in the photocatalytic performance of the system. This study reveals nature-mimicking hollow Pdots with porous shells as can be a type of promising photocatalysts in the application of solar energy conversion and storage.

Place, publisher, year, edition, pages
2019. Vol. 7, no 9, p. 4797-4803
National Category
Chemical Sciences Environmental Engineering Materials Engineering
Identifiers
URN: urn:nbn:se:su:diva-167490DOI: 10.1039/c8ta12146jISI: 000460687400052OAI: oai:DiVA.org:su-167490DiVA, id: diva2:1301273
Available from: 2019-04-01 Created: 2019-04-01 Last updated: 2019-04-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Tai, Cheuk-Wai
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Materials Chemistry A
Chemical SciencesEnvironmental EngineeringMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf