Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantifying the importance of functional traits for primary production in aquatic plant communities
Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. University of Helsinki, Finland.ORCID iD: 0000-0002-9741-4458
Number of Authors: 22019 (English)In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 107, no 1, p. 154-166Article in journal (Refereed) Published
Abstract [en]

1. Aquatic plant meadows are important coastal habitats that sustain many ecosystem functions such as primary production and carbon sequestration. Currently, there is a knowledge gap in understanding which plant functional traits, for example, leaf size or plant height underlie primary production in aquatic plant communities.

2. To study how plant traits are related to primary production, we conducted a field survey in the Baltic Sea, Finland, which is characterized by high plant species and functional diversity. Thirty sites along an exposure gradient were sampled (150 plots), and nine plant morphological and chemical traits measured. The aim was to discern how community-weighted mean traits affect community production and whether this relationship changes along an environmental gradient using structural equation modelling (SEM).

3. Plant height had a direct positive effect on production along an exposure gradient (r=0.33) and indirect effects through two leaf chemical traits, leaf delta N-15 and leaf delta C-13 (r=0.24 and 0.18, respectively) resulting in a total effect of 0.28. In plant communities experiencing varying exposure, traits such as root N concentration and leaf delta N-15 had positive and negative effects on production, respectively.

4. Synthesis. Our results demonstrate that the relationship between aquatic plant functional traits and community production is variable and changes over environmental gradients. Plant height generally has a positive effect on community production along an exposure gradient, while the link between other traits and production changes in plant communities experiencing varying degrees of exposure. Thus, the underlying biological mechanisms influencing production differ in plant communities, emphasizing the need to resolve variability and its drivers in real-world communities. Importantly, functionally diverse plant communities sustain ecosystem functioning differently and highlight the importance of benthic diversity for coastal ecosystem stability.

Place, publisher, year, edition, pages
2019. Vol. 107, no 1, p. 154-166
Keywords [en]
biodiversity, ecosystem function, effect trait, environmental gradient, macrophytes, seagrass, structural equation modelling, Zostera marina
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-167702DOI: 10.1111/1365-2745.13011ISI: 000459070600014OAI: oai:DiVA.org:su-167702DiVA, id: diva2:1301331
Available from: 2019-04-01 Created: 2019-04-01 Last updated: 2019-04-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Norkko, Alf
By organisation
Stockholm University Baltic Sea Centre
In the same journal
Journal of Ecology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf