Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of the isotope pairing technique in sediments: Use, challenges, and new directions
Stockholm University, Faculty of Science, Department of Geological Sciences.
Show others and affiliations
Number of Authors: 92019 (English)In: Limnology and Oceanography: Methods, ISSN 1541-5856, E-ISSN 1541-5856, Vol. 17, no 2, p. 112-136Article, review/survey (Refereed) Published
Abstract [en]

Determining accurate rates of benthic nitrogen (N) removal and retention pathways from diverse environments is critical to our understanding of process distribution and constructing reliable N budgets and models. The whole-core N-15 isotope pairing technique (IPT) is one of the most widely used methods to determine rates of benthic nitrate-reducing processes and has provided valuable information on processes and factors controlling N removal and retention in aquatic systems. While the whole core IPT has been employed in a range of environments, a number of methodological and environmental factors may lead to the generation of inaccurate data and are important to acknowledge for those applying the method. In this review, we summarize the current state of the whole core IPT and highlight some of the important steps and considerations when employing the technique. We discuss environmental parameters which can pose issues to the application of the IPT and may lead to experimental artifacts, several of which are of particular importance in environments heavily impacted by eutrophication. Finally, we highlight the advances in the use of the whole-core IPT in combination with other methods, discuss new potential areas of consideration and encourage careful and considered use of the whole-core IPT. With the recognition of potential issues and proper use, the whole-core IPT will undoubtedly continue to develop, improve our understanding of benthic N cycling and allow more reliable budgets and predictions to be made.

Place, publisher, year, edition, pages
2019. Vol. 17, no 2, p. 112-136
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-167679DOI: 10.1002/lom3.10303ISI: 000459497000003OAI: oai:DiVA.org:su-167679DiVA, id: diva2:1301953
Available from: 2019-04-03 Created: 2019-04-03 Last updated: 2019-04-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Brüchert, Volker
By organisation
Department of Geological Sciences
In the same journal
Limnology and Oceanography: Methods
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf