Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
uEvolution of the Progenitors of SNe 1993J and 2011dh Revealed through Late-time Radio and X-Ray Studies
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 92019 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 875, no 1, article id 17Article in journal (Refereed) Published
Abstract [en]

We perform hydrodynamical simulations of the interaction between supernova (SN) ejecta and circumstellar medium (CSM) for SN 1993J and SN 2011dh, and calculate the radio and X-ray emissions expected from the shocked gas at late epochs (t). Considering the ejecta structure from multi-group radiation hydrodynamics simulation, we find that the observed rapid drop in radio and X-ray light curves of SN 1993J at t > 3000 days may be due to a change in the mass-loss rate ((M)over dot) similar to 6500 yr prior to the explosion of the SN. The exact epoch scales inversely with the assumed wind velocity of nu(w) = 10 km s(-1). The progenitor of this SN very likely belonged to a binary system, where, during its evolution, the primary had transferred material to the secondary. It is argued in this paper that the change in (M)over dot can happen because of a change in the mass accretion efficiency (eta) of the companion star. It is possible that before similar to 6500. (nu(w)/10 km s(-1))(-1) yr prior to the explosion, eta was high, and thus the CSM was tenuous, which causes the late-time downturn in fluxes. In the case of SN. 2011dh, the late-time evolution is found to be consistent with a wind medium with (M)over dot/nu(w) = 4 x 10(-6) M-circle dot yr(-1)/10 km s(-1). It is difficult from our analysis to predict whether the progenitor of this SN had a binary companion; however, if future observations show a similar decrease in radio and X-ray fluxes, then this would give strong support to a scenario where both SNe had undergone a similar kind of binary evolution before explosion.

Place, publisher, year, edition, pages
2019. Vol. 875, no 1, article id 17
Keywords [en]
circumstellar matter, hydrodynamics, radiation mechanisms: non-thermal, radiation mechanisms: thermal, supernovae: individual (SN 1993J, SN 2011dh)
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-168341DOI: 10.3847/1538-4357/ab0d81ISI: 000464039600004OAI: oai:DiVA.org:su-168341DiVA, id: diva2:1314409
Available from: 2019-05-08 Created: 2019-05-08 Last updated: 2019-05-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Kundu, EshaLundqvist, PeterO'Connor, EvanErgon, MattiasChandra, Poonam
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astrophysical Journal
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf