Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Surface Structure of Cu2O(100): Nature of Defects
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
Number of Authors: 52019 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, no 13, p. 7696-7704Article in journal (Refereed) Published
Abstract [en]

The Cu2O(100) surface is most favorably terminated by a (3,0;1,1) reconstruction under ultrahigh-vacuum conditions. As most oxide surfaces, it exhibit defects, and it is these sites that are focus of attention in this study. The surface defects are identified, their properties are investigated, and procedures to accurately control their coverage are demonstrated by a combination of scanning tunneling microscopy (STM) and simulations within the framework of density functional theory (DFT). The most prevalent surface defect was identified as an oxygen vacancy. By comparison of experimental results, formation energies, and simulated STM images, the location of the oxygen vacancies was identified as an oxygen vacancy in position B, located in the valley between the two rows of oxygen atoms terminating the unperturbed surface. The coverage of defects is influenced by the surface preparation parameters and the history of the sample. Furthermore, using low-energy electron beam bombardment, we show that the oxygen vacancy coverage can be accurately controlled and reach a complete surface coverage (1 per unit cell or 1.8 defects per nm(2)) without modification to the periodicity of the surface, highlighting the importance of using local probes when investigating oxide surfaces.

Place, publisher, year, edition, pages
2019. Vol. 123, no 13, p. 7696-7704
National Category
Nano Technology Materials Engineering Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-168621DOI: 10.1021/acs.jpcc.8b05156ISI: 000463844500019OAI: oai:DiVA.org:su-168621DiVA, id: diva2:1314929
Available from: 2019-05-10 Created: 2019-05-10 Last updated: 2019-05-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Halldin Stenlid, JoakimBrinck, Tore
By organisation
Department of Physics
In the same journal
The Journal of Physical Chemistry C
Nano TechnologyMaterials EngineeringPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf