Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades
Stockholm University, Faculty of Science, Department of Zoology.ORCID iD: 0000-0001-6457-2866
Number of Authors: 32019 (English)In: Ecography, ISSN 0906-7590, E-ISSN 1600-0587, Vol. 42, no 4, p. 632-642Article in journal (Refereed) Published
Abstract [en]

The body size of an animal is probably its most important functional trait. For arthropods, environmental drivers of body size variation are still poorly documented and understood, especially in tropical regions. We use a unique dataset for two species-rich, phylogenetically independent moth taxa (Lepidoptera: Geometridae; Arctiinae), collected along an extensive tropical elevational gradient in Costa Rica, to investigate the correlates and possible causes of body-size variation. We studied 15 047 specimens (794 species) of Geometridae and 4167 specimens (308 species) of Arctiinae to test the following hypotheses: 1) body size increases with decreasing ambient temperature, as predicted by the temperature-size rule; 2) body size increases with increasing rainfall and primary productivity, as predicted from considerations of starvation resistance; and 3) body size scales allometrically with wing area, as elevation increases, such that wing loading (the ratio of body size to wing area) decreases with increasing elevation to compensate for lower air density. To test these hypotheses, we examined forewing length as a proxy for body size in relation to ambient temperature, rainfall, vegetation index and elevation as explanatory variables in linear and polynomial spatial regression models. We analysed our data separately for males and females using two principal approaches: mean forewing length of species at each site, and mean forewing length of complete local assemblages, weighted by abundance. Body size consistently increased with elevation in both taxa, both approaches, both sexes, and also within species. Temperature was the best predictor for this pattern (-0.98 < r < -0.74), whereas body size was uncorrelated or weakly correlated with rainfall and enhanced vegetation index. Wing loading increased with elevation. Our results support the temperature-size rule as an important mechanism for body size variation in arthropods along tropical elevational gradients, whereas starvation resistance and optimization of flight mechanics seem to be of minor importance.

Place, publisher, year, edition, pages
2019. Vol. 42, no 4, p. 632-642
Keywords [en]
Bergmann's rule, temperature-size rule, wing loading
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-168580DOI: 10.1111/ecog.03917ISI: 000462922500002OAI: oai:DiVA.org:su-168580DiVA, id: diva2:1317720
Available from: 2019-05-23 Created: 2019-05-23 Last updated: 2019-05-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Zeuss, Dirk
By organisation
Department of Zoology
In the same journal
Ecography
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf