Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Global transport of perfluoroalkyl acids via sea spray aerosol
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.ORCID iD: 0000-0002-6194-1491
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.ORCID iD: 0000-0003-0645-3265
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Meteorology .
Show others and affiliations
Number of Authors: 62019 (English)In: Environmental Science: Processes & Impacts, ISSN 2050-7887, E-ISSN 2050-7895, Vol. 21, no 4, p. 635-649Article in journal (Refereed) Published
Abstract [en]

Perfluoroalkyl acids (PFAAs) are persistent organic pollutants found throughout the world's oceans. Previous research suggests that long-range atmospheric transport of these substances may be substantial. However, it remains unclear what the main sources of PFAAs to the atmosphere are. We have used a laboratory sea spray chamber to study water-to-air transfer of 11 PFAAs via sea spray aerosol (SSA). We observed significant enrichment of all PFAAs relative to sodium in the SSA generated. The highest enrichment was observed in aerosols with aerodynamic diameter < 1.6 mm, which had aerosol PFAA concentrations up to similar to 62 000 times higher than the PFAA water concentrations in the chamber. In surface microlayer samples collected from the sea spray chamber, the enrichment of the substances investigated was orders of magnitude smaller than the enrichment observed in the aerosols. In experiments with mixtures of structural isomers, a lower contribution of branched PFAA isomers was observed in the surface microlayer compared to the bulk water. However, no clear trend was observed in the comparison of structural isomers in SSA and bulk water. Using the measured enrichment factors of perfluorooctanoic acid and perfluorooctane sulfonic acid versus sodium we have estimated global annual emissions of these substances to the atmosphere via SSA as well as their global annual deposition to land areas. Our experiments suggest that SSA may currently be an important source of these substances to the atmosphere and, over certain areas, to terrestrial environments.

Place, publisher, year, edition, pages
2019. Vol. 21, no 4, p. 635-649
National Category
Chemical Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-169071DOI: 10.1039/c8em00525gISI: 000465153900015PubMedID: 30888351OAI: oai:DiVA.org:su-169071DiVA, id: diva2:1318240
Available from: 2019-05-27 Created: 2019-05-27 Last updated: 2019-05-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Johansson, Jana H.Salter, Matthew E.Leck, CarolineNilsson, E. DouglasCousins, Ian T.
By organisation
Department of Environmental Science and Analytical ChemistryDepartment of Meteorology
In the same journal
Environmental Science: Processes & Impacts
Chemical SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf