Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Radio Source Coincident with the Superluminous Supernova PTF10hgi: Evidence for a Central Engine and an Analog of the Repeating FRB 121102?
Show others and affiliations
Number of Authors: 122019 (English)In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 876, no 1, article id L10Article in journal (Refereed) Published
Abstract [en]

We present the detection of an unresolved radio source coincident with the position of the Type I superluminous supernova (SLSN) PTF10hgi (z = 0.098) about 7.5 yr post-explosion, with a flux density of F-nu(6 GHz) approximate to 47.3 mu Jy and a luminosity of L-nu(6 GHz) approximate to 1.1 x 10(28) erg s(-1) Hz(-1). This represents the first detection of radio emission coincident with an SLSN on any timescale. We investigate various scenarios for the origin of the radio emission: star formation activity, an active galactic nucleus, and a non-relativistic supernova blastwave. While any of these would be quite novel if confirmed, none appear likely when considered within the context of the other properties of the host galaxy, previous radio observations of SLSNe, and the general population of hydrogen-poor supernovae (SNe). Instead, the radio emission is reminiscent of the quiescent radio source associated with the repeating FRB 121102, which has been argued to be powered by a magnetar born in a SLSN or long gamma-ray burst explosion several decades ago. We show that the properties of the radio source are consistent with a magnetar wind nebula or an off-axis jet, indicating the presence of a central engine. Our directed search for fast radio bursts from the location of PTF10hgi using 40 minutes of Very Large Array phased-array data reveals no detections to a limit of 22 mJy (10 sigma; 10 ms duration). We outline several follow-up observations that can conclusively establish the origin of the radio emission.

Place, publisher, year, edition, pages
2019. Vol. 876, no 1, article id L10
Keywords [en]
radio continuum: general, supernovae: general
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-169282DOI: 10.3847/2041-8213/ab18a5ISI: 000466752800001OAI: oai:DiVA.org:su-169282DiVA, id: diva2:1320830
Available from: 2019-06-05 Created: 2019-06-05 Last updated: 2019-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Margalit, B.Chatterjee, S.Cordes, J. M.Lunnan, Ragnhild
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astrophysical Journal Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 90 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf