Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distribution of carbon and nitrogen along hillslopes in three valleys on Herschel Island, Yukon Territory, Canada
Stockholm University, Faculty of Science, Department of Physical Geography. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Germany; University of Potsdam, Germany.
Stockholm University, Faculty of Science, Department of Physical Geography.
Show others and affiliations
Number of Authors: 52019 (English)In: Catena (Cremlingen. Print), ISSN 0341-8162, E-ISSN 1872-6887, Vol. 178, p. 132-140Article in journal (Refereed) Published
Abstract [en]

Thermokarst results from the thawing of ice-rich permafrost and alters the biogeochemical cycling in the Arctic by reworking soil material and redistributing soil organic carbon (SOC) and total nitrogen (TN) along uplands, hillslopes, and lowlands. Understanding the impact of this redistribution is key to better estimating the storage of SOC in permafrost terrains. However, there are insufficient studies quantifying long-term impacts of thaw processes on the distribution of SOC and TN along hillslopes. We address this issue by providing estimates of SOC and TN stocks along the hillslopes of three valleys located on Herschel Island (Yukon, Canada), and by discussing the impact of hillslope thermokarst on the variability of SOC and TN stocks. We found that the average SOC and TN 0-100 cm stocks in the valleys were 26.4 +/- 8.9 kg C m(-2) and 2.1 +/- 0.6 kg N m(-2). We highlight the strong variability in the soils physical and geochemical properties within hillslope positions. High SOC stocks were found at the summits, essentially due to burial of organic matter by cryoturbation, and at the toeslopes due to impeded drainage which favored peat formation and SOC accumulation. The average carbon-to-nitrogen ratio in the valleys was 12.9, ranging from 9.7 to 18.9, and was significantly higher at the summits compared to the backslopes and footslopes (p < 0.05), suggesting a degradation of SOC downhill. Carbon and nitrogen contents and stocks were significantly lower on 16% of the sites that were previously affected by hillslope thermokarst (p < 0.05). Our results showed that lateral redistribution of SOC and TN due to hillslope thermokarst has a strong impact on the SOC storage in ice-rich permafrost terrains.

Place, publisher, year, edition, pages
2019. Vol. 178, p. 132-140
Keywords [en]
Hillslope thermokarst, Soil organic carbon storage, Catchment geomorphology, Permafrost degradation
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-169222DOI: 10.1016/j.catena.2019.02.029ISI: 000466999700014OAI: oai:DiVA.org:su-169222DiVA, id: diva2:1326773
Available from: 2019-06-18 Created: 2019-06-18 Last updated: 2019-06-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Ramage, Justine L.Hugelius, Gustaf
By organisation
Department of Physical Geography
In the same journal
Catena (Cremlingen. Print)
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf