Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hierarchical Porous Carbon Synthesized from Novel Porous Amorphous Calcium or Magnesium Citrate with Enhanced SF6 Uptake and SF6/N-2 Selectivity
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Number of Authors: 42019 (English)In: Acs Applied Nano Materials, ISSN 2574-0970, Vol. 2, no 2, p. 778-789Article in journal (Refereed) Published
Abstract [en]

The emission of greenhouse gases such as CO2 and SF6 is believed to contribute significantly toward global warming. One way to reduce their release is by adsorption at point sources using a suitable adsorbent. In this work we present the synthesis of two hierarchical porous carbon materials (referred to as PC-CaCit and PC-MgCit) with a high uptake of SF 6 (5.23 mmol/g, 0 degrees C, 100 kPa) and a reasonable uptake of CO2 (>3 mmol/g). PC-CaCit and PC-MgCit were obtained by pyrolysis of the most porous calcium citrate and magnesium citrate ever reported, which were synthesized by us. The Langmuir specific surface area of PC-CaCit and PC-MgCit was over 2000 m(2)/g (BET surface area also close to 2000 m(2)/g). We characterized PC-CaCit and PC-MgCit using a range of advanced characterization techniques including N-2 adsorption, high-resolution electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. PC-CaCit and PC-MgCit also showed a SF6-over-N-2 selectivity of similar to 33 at 0 degrees C (100 kPa), good cyclic performance, and moderately low heat of adsorption. The porous carbons synthesized in this work are good candidate adsorbents for greenhouse gases.

Place, publisher, year, edition, pages
2019. Vol. 2, no 2, p. 778-789
Keywords [en]
porous carbon, SF6 adsorption, CO2 adsorption, amorphous calcium citrate, amorphous magnesium citrate
National Category
Nano Technology Materials Engineering Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-170236DOI: 10.1021/acsanm.8b02005ISI: 000469409900019OAI: oai:DiVA.org:su-170236DiVA, id: diva2:1329442
Available from: 2019-06-24 Created: 2019-06-24 Last updated: 2019-06-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Tai, Cheuk-Wai
By organisation
Department of Materials and Environmental Chemistry (MMK)
Nano TechnologyMaterials EngineeringChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf