Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. IMDEA Water Institute, Spain.
Show others and affiliations
Number of Authors: 52019 (English)In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 231, p. 103-112Article in journal (Refereed) Published
Abstract [en]

Reducing human impacts on drinking water is one of the main challenges for the water treatment industry. This work provides new results to support the recycling of EoL desalination reverse osmosis (RO) membranes for Membranes Biofilm Reactors (MBfRs). We investigate if the controlled-removal of fouling and polyamide layer may favor the use of these membranes in MBfRs. It also would allow establishing a normalized methodology of membrane recycling, regardless of inherited fouling during its lifespan. For this purpose, we transform by chlorination discarded brackish (BWd) and seawater (SWd) membranes into nanofiltration (BWt-NF and SWt-NF) and ultrafiltration (BWt-UF and SWt-UF) membranes. Our results show that chlorine attacks allow the fouling cleaning while improves the hydrophilicity and maintains roughness only in BWt-NF. Therefore, the bacterial deposition in this membrane is greater than the other tested membranes. Besides, the microcystin (MC) degradation capacity of BWt-NF verifies the compatibility of the chemical modification for the biological activity of MC-degrading bacteria. Finally, our results also provide that polyamide thin-film composite (PA-TFC) membranes, originally manufactured for salt rejection during desalination processes, offer competitive gases diffusion at low pressures. Therefore, we conclude that the membrane recycling may provide alternative low cost and gas permeable membranes for MBfRs, according to circular economy principles.

Place, publisher, year, edition, pages
2019. Vol. 231, p. 103-112
Keywords [en]
Recycled membranes, Transformation process, Chlorination, Fouling, Biofilm, Microcystin, Degradation, Gas permeability
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-170761DOI: 10.1016/j.chemosphere.2019.05.108ISI: 000472694200012PubMedID: 31128344OAI: oai:DiVA.org:su-170761DiVA, id: diva2:1338766
Available from: 2019-07-24 Created: 2019-07-24 Last updated: 2019-07-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
El-Shehawy, Rehab
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Chemosphere
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf