Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Regulation of the replication initiator DnaA in Caulobacter crescentus
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).ORCID iD: 0000-0002-2494-1345
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).ORCID iD: 0000-0002-1469-4424
Number of Authors: 32019 (English)In: Biochimica et Biophysica Acta. Gene Regulatory Mechanisms, ISSN 1874-9399, E-ISSN 1876-4320, Vol. 1862, no 7, p. 697-705Article, review/survey (Refereed) Published
Abstract [en]

The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. In nearly all bacteria, replication initiation requires the activity of the conserved replication initiation protein DnaA. Due to its central role in cell cycle progression, DnaA activity must be precisely regulated. This review summarizes the current state of DnaA regulation in the asymmetrically dividing alpha-proteobacterium Caulobacter crescentus, an important model for bacterial cell cycle studies. Mechanisms will be discussed that regulate DnaA activity and abundance under optimal conditions and in coordination with the asymmetric Caulobacter cell cycle. Furthermore, we highlight recent findings of how regulated DnaA synthesis and degradation collaborate to adjust DnaA abundance under stress conditions. The mechanisms described provide important examples of how DNA replication is regulated in an a-proteobacterium and thus represent an important starting point for the study of DNA replication in many other bacteria. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.

Place, publisher, year, edition, pages
2019. Vol. 1862, no 7, p. 697-705
Keywords [en]
DNA replication, Bacterial cell cycle, Proteolysis, Stationary phase, Proteotoxic stress, Nutrient starvation
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-170808DOI: 10.1016/j.bbagrm.2018.01.004ISI: 000473840400005PubMedID: 29382570OAI: oai:DiVA.org:su-170808DiVA, id: diva2:1339576
Available from: 2019-07-30 Created: 2019-07-30 Last updated: 2019-07-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Felletti, MicheleOmnus, Deike J.Jonas, Kristina
By organisation
Department of Molecular Biosciences, The Wenner-Gren InstituteScience for Life Laboratory (SciLifeLab)
In the same journal
Biochimica et Biophysica Acta. Gene Regulatory Mechanisms
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf