Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An extensive grid of DARWIN models for M-type AGB stars I. Mass-loss rates and other properties of dust-driven winds
Stockholm University, Faculty of Science, Department of Astronomy. Uppsala University, Sweden.
Show others and affiliations
Number of Authors: 52019 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 626, article id A100Article in journal (Refereed) Published
Abstract [en]

Context. The stellar winds of asymptotic giant branch (AGB) stars are commonly attributed to radiation pressure on dust grains, formed in the wake of shock waves that arise in the stellar atmospheres. The mass loss due to these outflows is substantial, and modelling the dynamical properties of the winds is essential both for studies of individual stars and for understanding the evolution of stellar populations with low to intermediate mass.

Aims. The purpose of this work is to present an extensive grid of dynamical atmosphere and wind models for M-type AGB stars, covering a wide range of relevant stellar parameters.

Methods. We used the DARWIN code, which includes frequency-dependent radiation-hydrodynamics and a time-dependent description of dust condensation and evaporation, to simulate the dynamical atmosphere. The wind-driving mechanism is photon scattering on submicron-sized Mg2SiO4 grains. The grid consists of similar to 4000 models, with luminosities from L-* = 890 L-circle dot to L-* = 40 000 L-circle dot and effective temperatures from 2200 to 3400 K. For the first time different current stellar masses are explored with M-type DARWIN models, ranging from 0.75 M-circle dot to 3 M-circle dot. The modelling results are radial atmospheric structures, dynamical properties such as mass-loss rates and wind velocities, and dust properties (e.g. grain sizes, dust-to-gas ratios, and degree of condensed Si).

Results. We find that the mass-loss rates of the models correlate strongly with luminosity. They also correlate with the ratio L-*/M-* : increasing L-*/M-* by an order of magnitude increases the mass-loss rates by about three orders of magnitude, which may naturally create a superwind regime in evolution models. There is, however, no discernible trend of mass-loss rate with effective temperature, in contrast to what is found for C-type AGB stars. We also find that the mass-loss rates level off at luminosities higher than similar to 14 000 L-circle dot, and consequently at pulsation periods longer than similar to 800 days. The final grain radii range from 0.25 to 0.6 mu m. The amount of condensed Si is typically between 10 and 40%, with gas-to-dust mass ratios between 500 and 4000.

Place, publisher, year, edition, pages
2019. Vol. 626, article id A100
Keywords [en]
stars: AGB and post-AGB, stars: winds, outflows, stars: mass-loss, stars: atmospheres, stars: evolution, stars: late-type
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-171108DOI: 10.1051/0004-6361/201935366ISI: 000472465400001OAI: oai:DiVA.org:su-171108DiVA, id: diva2:1342890
Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2019-08-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Liljegren, Sofie
By organisation
Department of Astronomy
In the same journal
Astronomy and Astrophysics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf