Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photoevaporation of Jeans-unstable molecular clumps
Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Leiden University, the Netherlands.ORCID iD: 0000-0002-3258-3672
Show others and affiliations
Number of Authors: 52019 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 487, no 3, p. 3377-3391Article in journal (Refereed) Published
Abstract [en]

We study the photoevaporation of Jeans-unstable molecular clumps by isotropic FUV (6 eV < by < 13.6 eV) radiation, through 3D radiative transfer hydrodynamical simulations implementing a non-equilibrium chemical network that includes the formation and dissociation of H2. We run a set of simulations considering different clump masses (M = 10-200 Mo) and impinging fluxes (G0 = 2 x 103 to 8 x 104 in Habing units). In the initial phase, the radiation sweeps the clump as an R-type dissociation front, reducing the H2 mass by a factor 40-90 per cent. Then, a weak (.A4 2) shock develops and travels towards the centre of the clump, which collapses while losing mass from its surface, All considered clumps remain gravitationally unstable even if radiation rips off most of the clump mass, showing that external REV radiation is not able to stop clump collapse. However, the REV intensity regulates the final H2 mass available for star formation: for example, for Go < 104 more than 10 per cent of the initial clump mass survives, Finally, for massive clumps (?, 100 the H2 mass increases by 25-50 per cent during the collapse, mostly because of the rapid density growth that implies a more efficient H2 self-shielding.

Place, publisher, year, edition, pages
2019. Vol. 487, no 3, p. 3377-3391
Keywords [en]
methods: numerical, ISM: clouds, ISM: evolution, photodissociation region (PDR)
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-171680DOI: 10.1093/mnras/stz1527ISI: 000478053200033OAI: oai:DiVA.org:su-171680DiVA, id: diva2:1344510
Available from: 2019-08-21 Created: 2019-08-21 Last updated: 2019-12-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Decataldo, D.Vallini, Livia
By organisation
Nordic Institute for Theoretical Physics (Nordita)
In the same journal
Monthly notices of the Royal Astronomical Society
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf