Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enzymatic Pictet-Spengler Reaction: Computational Study of the Mechanism and Enantioselectivity of Norcoclaurine Synthase
Stockholm University, Faculty of Science, Department of Organic Chemistry.ORCID iD: 0000-0002-6542-6649
Stockholm University, Faculty of Science, Department of Organic Chemistry.ORCID iD: 0000-0002-1012-5611
Number of Authors: 22019 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 141, no 28, p. 11230-11238Article in journal (Refereed) Published
Abstract [en]

The Pictet-Spengler (PS) reaction, i.e., the acidcatalyzed condensation between beta-arylethylamine and an aldehyde or a ketone and the subsequent ring closure, is an important reaction in organic chemistry. A number of enzymes (called Pictet-Spenglerases, PSases) have been identified to catalyze this reaction, usually with very high enantioselectivity, making these enzymes of potential value in biocatalysis. PSases catalyze the key step in the biosynthesis of indole and benzylisoquinoline alkaloids of plant origin, some of which have pharmacological importance. However, the reaction mechanisms and the origins of the selectivity are not fully understood. Herein, we report a quantum chemical investigation of the mechanism and enantioselectivity of norcoclaurine synthase (NCS), an enzyme that catalyzes the PS condensation between dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA). A large model of the active site is designed on the basis of a recent crystal structure, and it is used to calculate the detailed energy profile of the reaction. Good agreement is obtained between the calculated energies and available experimental information. Both the dopamine-first and the HPAA-first binding modes of the substrates reported in the literature are shown to be energetically accessible in the enzyme-substrate complex. However, it is demonstrated that only the dopamine-first pathway is associated with feasible energy barriers. Key active site residues are identified, and their roles in the catalysis are discussed and compared to site-directed mutagenesis experiments. Very importantly, the calculations are able to reproduce and rationalize the observed enantioselectivity of NCS. A detailed analysis of the geometries of the intermediates and transition states helps to pinpoint the main factors controlling the selectivity.

Place, publisher, year, edition, pages
2019. Vol. 141, no 28, p. 11230-11238
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-171660DOI: 10.1021/jacs.9b04591ISI: 000476684700037PubMedID: 31265268OAI: oai:DiVA.org:su-171660DiVA, id: diva2:1344651
Available from: 2019-08-21 Created: 2019-08-21 Last updated: 2019-12-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Sheng, XiangHimo, Fahmi
By organisation
Department of Organic Chemistry
In the same journal
Journal of the American Chemical Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf