Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A proposal for the structure of high- and low-density fluctuations in liquid water
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
Number of Authors: 52019 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 151, no 3, article id 034508Article in journal (Refereed) Published
Abstract [en]

Based on recent experimental data that can be interpreted as indicating the presence of specific structures in liquid water, we build and optimize two structural models which we compare with the available experimental data. To represent the proposed high-density liquid structures, we use a model consisting of chains of water molecules, and for low-density liquid, we investigate fused dodecahedra as templates for tetrahedral fluctuations. The computed infrared spectra of the models are in very good agreement with the extracted experimental spectra for the two components, while the extracted structures from molecular dynamics (MD) simulations give spectra that are intermediate between the experimentally derived spectra. Computed x-ray absorption and emission spectra as well as the O-O radial distribution functions of the proposed structures are not contradicted by experiment. The stability of the proposed dodecahedral template structures is investigated in MD simulations by seeding the starting structure, and remnants found to persist on an similar to 30 ps time scale. We discuss the possible significance of such seeds in simulations and whether they can be viable candidates as templates for structural fluctuations below the compressibility minimum of liquid water.

Place, publisher, year, edition, pages
2019. Vol. 151, no 3, article id 034508
National Category
Chemical Sciences Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-171635DOI: 10.1063/1.5100875ISI: 000476588700020PubMedID: 31325915OAI: oai:DiVA.org:su-171635DiVA, id: diva2:1344973
Available from: 2019-08-22 Created: 2019-08-22 Last updated: 2019-08-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Camisasca, GaiaSchlesinger, DanielZhovtobriukh, IuriiPettersson, Lars G. M.
By organisation
Department of PhysicsDepartment of Environmental Science and Analytical Chemistry
In the same journal
Journal of Chemical Physics
Chemical SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 70 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf