Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel method for assessing microplastic effect in suspension through mixing test and reference materials
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.ORCID iD: 0000-0002-4192-6956
Number of Authors: 42019 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 10695Article in journal (Refereed) Published
Abstract [en]

The occurrence of microplastic in the environment is of global concern. However, the microplastic hazard assessment is hampered by a lack of adequate ecotoxicological methods because of conceptual and practical problems with particle exposure. In the environment, suspended solids (e.g., clay and cellulose) in the same size range as microplastic, are ubiquitous. Therefore, it must be established whether the addition of microplastic to these background levels of particulate material represents a hazard. We present a novel approach employing a serial dilution of microplastic and reference particles, in mixtures, which allows disentangling the effect of the microplastic from that of the other particulates. We demonstrate the applicability of the method using an immobilization test with Daphnia magna exposed to polyethylene terephthalate (test microplastic; median particle diameter similar to 5 mu m) and kaolin clay (reference material; similar to 3 mu m). In the range of the suspended solids test concentrations (0-10 000 mg L-1), with microplastic contributing 0-100% of total mass, the Lc(50) values for the plastic mixtures were significantly lower compared to the kaolin exposure. Hence, the exposure to polyethylene terephthalate was more harmful to the daphnids than to the reference material alone. The estimated threshold for the relative contribution of the test microplastic to suspended matter above which significantly higher mortality was observed was 2.4% at 32 mg of the solids L-1. This approach has a potential for standardization of ecotoxicological testing of particulates, including microplastic.

Place, publisher, year, edition, pages
2019. Vol. 9, article id 10695
National Category
Occupational Health and Environmental Health Environmental Sciences Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-171633DOI: 10.1038/s41598-019-47160-1ISI: 000476719600004PubMedID: 31337836OAI: oai:DiVA.org:su-171633DiVA, id: diva2:1344977
Available from: 2019-08-22 Created: 2019-08-22 Last updated: 2019-08-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Gerdes, ZandraOgonowski, MartinGorokhova, Elena
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Scientific Reports
Occupational Health and Environmental HealthEnvironmental SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf