Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phenology as a process rather than an event: from individual reaction norms to community metrics
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Florida State University, USA; Rocky Mountain Biological Lab, USA.
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Florida State University, USA; Rocky Mountain Biological Lab, USA.
Number of Authors: 32019 (English)In: Ecological Monographs, ISSN 0012-9615, E-ISSN 1557-7015, Vol. 89, no 2, article id e01352Article in journal (Refereed) Published
Abstract [en]

Measures of the seasonal timing of biological events are key to addressing questions about how phenology evolves, modifies species interactions, and mediates biological responses to climate change. Phenology is often characterized in terms of discrete events, such as a date of first flowering or arrival of first migrants. We discuss how phenological events that are typically measured at the population or species level arise from distributions of phenological events across seasons, and from norms of reaction of these phenological events across environments. We argue that individual variation in phenological distributions and reaction norms has important implications for how we should collect, analyze, and interpret phenological information. Regarding phenology as a reaction norm rather than one year's specific values implies that selection acts on the phenologies that an individual expresses over its lifetime. To understand how climate change is likely to influence phenology, we need to consider not only plastic responses along the reaction norm but changes in the reaction norm itself. We show that when individuals vary in their reaction norms, correlations between reaction norm elevation and slope make first events particularly poor estimators of population sensitivity to climate change, and variation in slopes can obscure the pattern of selection on phenology. We also show that knowing the shape of the distribution of phenological events across the season is important for predicting biologically important phenological mismatches with climate change. Last, because phenological events are parts of a continuous developmental process, we suggest that the approach of measuring phenology by recording developmental stages of individuals in a population at a single point in time should be used more widely. We conclude that failure to account for phenological distributions and reaction norms may lead to overinterpretation of metrics based on single events, such as commonly recorded first event dates, and may confound meta-analyses that use a range of metrics. Rather than prescribing a single universal approach to studying phenology, we point out limitations of inferences based on single metrics and encourage work that considers the multivariate nature of phenology and more tightly links data collection and analyses with biological hypotheses.

Place, publisher, year, edition, pages
2019. Vol. 89, no 2, article id e01352
Keywords [en]
phenological distribution, phenological mismatch, phenology, reaction norm, response to climate change
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-172059DOI: 10.1002/ecm.1352ISI: 000477640700010OAI: oai:DiVA.org:su-172059DiVA, id: diva2:1345033
Available from: 2019-08-22 Created: 2019-08-22 Last updated: 2019-08-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Ehrlén, Johan
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
Ecological Monographs
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf